STANDARD DETAILS

INDEX

For Halifax Water Standard Details, see Halifax Regional Water Commission Supplementary Standard Specifications Section 39 00 00 – Standard Details, latest edition

TITLE	DETAIL No.	Date
Asphalt Swale	HRM 30	2021
Speed Hump	HRM 31	2023
Driveway Deflection Angles & Grades	HRM 32	2021
Guide Rail Installation	HRM 36	2021
Railing	HRM 37	2021
Urban Traffic Sign Post	HRM 38	2023
Rural Traffic Sign Post	HRM 39	2023
Typical Walkway	HRM 40	2021
Active Transportation Off Road Trail	HRM 41	2021
Urban Sidewalk	HRM 44	2021
Rural Type I Sidewalk	HRM 45	2021
Rural Type II Sidewalk	HRM 46	2021
Rural Type III Sidewalk	HRM 47	2021
Concrete Sidewalk Reinforcing	HRM 48	2023
Pedestrian Ramp Alignment	HRM 49	2021
Driveway Ramp	HRM 50	2021
New Driveway Access in Existing Full-Depth Curb	HRM 51	2021
Concrete Traffic Island	HRM 52	2021
Concrete Curb & Gutter	HRM 53	2021
Curb Renewal / Payment	HRM 54	2021
Asphalt Curb	HRM 55	2021
Concrete Bus Bay Pad - End Block	HRM 57	2024
Concrete Bus Bay Pad - Mid Block	HRM 58	2024
Trench Backfill and Reinstatement Testing	HRM 61	2021
Tree Planting in Parks/Open Space	HRM 66	2021
Underground Conduit	HRM 78	2021
Pull Pit	HRM 79	2021
Wooden Pole Power Feed (For Traffic Signals)	HRM 86	2021

HALIFAX REGIONAL MUNICIPALIT [PROJECT NAME] [TENDER NO.]	Y STANDARD DETA	ILS	SECTION: 39 00 00 PAGE 2 JAN 2024
Aluminium Pole RA-5 Signal Config	guration	HRM 87	2021
Wooden Pole RA-5 Traffic Signal V Power Feed Configuration	Vith	HRM 88	2021
Standard Intersection Pavement M	arking Layout	HRM 89	2021
Longitudinal and Transverse Marki	ngs	HRM 90	2021
Pavement Arrows		HRM 91	2021
Bicycle Symbol & Shared Use Lan	e Symbol	HRM 92	2023
Pedestrian Gate		HRM 119	2023
Urban Traffic Sign Installation		HRM 129	2024
Rural Traffic Sign Installation		HRM 130	2024
Tactile Walking Surface Indicator F	Ramp Placement	HRM 131	2023
Walkway with Pedestrian Ramp		HRM 132	2021
Concrete Sidewalk Adjacent Curb		HRM 133	2021
Red In-Lay Reserved Lane		HRM 134	2021
Fence Detail (Round Wooden Rails & Steel Pos	ts)	HRM 135	2021
Speed Hump Survey Verifications		HRM 136	2021
Concrete Bus Stop Landing Pad (\	Nith Sidewalk)	HRM 138	2024
Tree Protection Zone & Barrier		HRM 140	2021
Speed Table Detail		HRM 143	2023
Speed Table Survey Verification		HRM 144	2021
Bus Stop Shelter on Concrete Side	ewalk	HRM 153	2024
Bus Stop Shelter on Concrete Wal	I	HRM 155	2024
Bus Stop Shelter on Concrete Sor		HRM 156	2024
Utility Pole Service Detail		HRM 160	2021
Inverted U Bike Rack		HRM 165	2021
Multi Inverted U Bike Rack		HRM 166	2021
Post & Ring Bike Rack		HRM 167	2021
Rectangular Rapid Flashing Beaco	n	HRM 172	2023
(Solar Cabinet-Based)	ווכ		2023
Rectangular Rapid Flashing Beaco (Solar Self-Contained)	on	HRM 180	2023
Soil Texture Triangle		HRM 181	2021
Tree Planting in SOD Boulevard		HRM 182	2021
Accessible Parallel Parking		HRM 193	2021
(Beginning Of Block)		111/101 193	2024
Accessible Parallel Parking		HRM 194	2023
(Midblock & End of Block)			2020

HALIFAX REGIONAL MUNICIPALITY [PROJECT NAME] [TENDER NO.]

STANDARD DETAILS

Traffic Signal Bases				
Traffic Signal Base for Configuration A	HRM 68	2021		
Standard Notes – Shaft Foundations	HRM 68N1	2021		
Standard Notes – Spread Footings	HRM 68N2	2021		
Pole Base Selection Guide	HRM 68N3	2021		
Traffic Signal Base for Configurations B, C, D and E	HRM 69	2021		
Traffic Signal Base for Configurations F, G, and H	HRM 70	2021		
Traffic Signal Base for Configurations I, J, K and L	HRM 71	2021		
Traffic Signal Base for Configuration M	HRM 71A	2021		
Traffic Signal Base for Configurations N, O and P	HRM 72	2021		
Traffic Signal Base for Configurations Q, R and S	HRM 72A	2021		
Traffic Signal base for Configurations T, U and V	HRM 73	2021		
Traffic Signal Base for Configurations W, X and Y	HRM 73A	2021		
Traffic Signal Base for Configurations Z, AA and AB	HRM 74	2021		
Traffic Signal base for Configurations AC, AD and AE	HRM 74A	2021		
Foundation Revisions for Doweling into Rock	HRM 74B.1	2021		
Foundation Revisions for Doweling into Rock	HRM 74B.2	2021		
Traffic Signal base for Configuration AF	HRM 74X	2021		
Base Mounted Traffic Signa Controller Cabinet	HRM 175	2021		
Base Mounted Traffic Signal Controller Cabinet with Battery Back-Up Unit	HRM 176	2021		
Street Lighting Power Enclosure Base	HRM 177	2021		

SCALE: FIG No.: 1:50 HRM 41

DATE:	2021	REFERENCE	APPROVED
SCALE:	1:5		FIG No.: HRM 55

LONGITUDINAL SECTION

	SINGLE BUS BAY (MINIMUM DIMENSION)	DOUBLE BUS BAY (MINIMUM DIMENSION)
A	*16m	34m
В	25m	25m
С	41m	59m

NOTES:

- 1. 15M BARS AT 300 mm C.C. BOTH WAYS.
- CONTROL JOINTS TO BE AT A DEPTH OF 1/4 OF PAD THICKNESS & SEALED ACCORDING TO HRM SPECS.
- 3. CONTROL JOINT EVERY 4.0 m MAXIMUM.
- 4. MINIMUM WIDTH OF CONCRETE BASE IS 0.6 m.
- 5. *FOR ARTICULATED BUS ROUTES INCREASE TO 22m.
- 6. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS OTHERWISE NOTED.

ΗΛLIFΛΧ				
	STANDARD DETAIL			
CONCRETE BUS BAY PAD – END BLOCK				
DATE:	2024	REFERENCE	APPROVED	
SCALE:	NTS		FIG No.: HRM 57	

TRENCH BACKFILL AND REINSTATEMENT – TESTING REQUIREMENTS				
TEST REQUIRED	COMPACTION REQUIRED	MINIMUM TES TRENCH LESS THAN 1.5m WIDE	T FREQUENCY TRENCH GREATER THAN 1.5m WIDE	
COMPACTION OF BEDDING, HAUNCH AND COVER MATERIALS (ASTM D698) *SEE NOTE 3	95% MINIMUM AT 3% ± OF OPTIMUM MOISTURE. (SEE NOTES)	1 PER 25 m AT THE CENTRELINE OF THE TRENCH (AND EACH BENCH OR SECTION OF TRENCH LESS THAN 25 m IN LENGTH) FOR EACH 600	3 PER 25 m (AND EACH BENCH OR SECTION OF TRENCH LESS THAN 25 m IN LENGTH) FOR EACH 600 VERTICAL DEPTH OF BACKFILL MATERIAL 1 TEST SHALL BE TAKEN AT THE CENTRELINE OF THE	
COMPACTION OF STRUCTURAL FILL TO SUBGRADE ELEVATION	TOP 300 98% COMPACTION MINIMUM AT 3% ± OF OPTIMUM MOISTURE. (SEE NOTES)	VERTICAL DEPTH OF BACKFILL MATERIAL A MINIMUM OF 3 TESTS PER TRENCH SHALL BE PERFORMED.	TRENCH (SET BACK AT LEAST 300 mm FROM THE EDGE OF THE TRENCH). A MINIMUM OF 3 TESTS PER TRENCH SHALL BE PERFORMED.	
(ASTM D698) *SEE NOTE 3	BELOW 300 95% COMPACTION MINIMUM AT 3% ± OF OPTIMUM MOISTURE. (SEE NOTES)			
COMPACTION OF TYPE 1 & TYPE 2 BASE & SUB-BASE MATERIALS (ASTM D698)	100% COMPACTION MINIMUM AT 3% ± OF OPTIMUM MOISTURE (SEE NOTES)	FOR EACH MATERIAL, 1 PER 25 m AT THE CENTRELINE OF THE TRENCH (AND EACH BRANCH OR SECTION OF THE TRENCH LESS THAN 25 m IN LENGTH) FOR EACH 300 VERTICAL DEPTH OF BACKFILL MATERIAL. A MINIMUM OF 3 TESTS PER TRENCH SHALL BE PERFORMED.	FOR EACH MATERIAL, 3 PER 25 m (AND EACH BRANCH OR SECTION OF TRENCH LESS THAN 25 m IN LENGTH) FOR EACH 300 VERTICAL IN DEPTH OF BACKFILL MATERIAL. 1 TESTS SHALL BE TAKEN AT THE CENTRELINE OF THE TRENCH AND 1 AT EACH EDGE OF THE TRENCH (SET BACK AT LEAST 300 mm FROM THE EDGE OF THE TRENCH). A MINIMUM OF 3 TESTS PER TRENCH SHALL BE PERFORMED.	
COMPACTION OF HOT MIX ASPHALT PAVEMENT (ASTM D3549 & 2726)	95% OF MAXIMUM THEORETICAL DENSITY OF COMPARATIVE MARSHALL LABORATORY SAMPLE.	ONE TEST FOR EACH 75 m ² OF PAVEMENT SURFACE. A MINIMUM OF 1 TEST PER TRENCH.	ONE TEST FOR EACH 75 m ² OF PAVEMENT SURFACE. A MINIMUM OF 1 TEST PER TRENCH.	

NOTES:

- 1. THE TRENCH WIDTH FOR DETERMINATION OF THE TEST SHALL BE THE WIDTH OF THE TRENCH AT THE LEVEL OF THE TEST BEING PERFORMED.
- 2. IF MINIMUM MOISTURE DENSITY REQUIREMENTS ARE NOT MET BY THESE TESTS, THE CONTRACTOR SHALL RECOMPACT THE TRENCH AS NEEDED TO ACHIEVE THE SPECIFIED COMPACTION. SUCH RECOMPACTION SHALL EXTEND ON BOTH SIDES OF THE FAILED TEST SECTION A DISTANCE EQUAL TO 1/2 THE DISTANCE FROM WHERE THE LAST TEST WAS TAKEN OR 50 m, WHICHEVER IS LEAST. AN ALTERNATIVE PROCEDURE WOULD BE TO MORE CLEARLY DEFINE THE LIMITS OF THE FAILED AREA TO ADDITIONAL TESTS.
- 3. TESTING FOR BEDDING, HAUNCH AND STRUCTURAL FILL ARE NOT ONLY REQUIRED WHEN THE TOTAL LENGTH OF TRENCH EXCEEDS 100 m, OR WHEN REQUESTED BY THE HRM INSPECTOR.

	STANDARD	DETAIL
--	----------	--------

TRENCH BACKFILL & REINSTATEMENT-TESTING

DATE:	2021	REFERENCE	APPROVED
	2021		
SCALE:			FIG No.:
	NTS		HRM 61

- SHALL BE RED.
- 2. PERMANENT PAVEMENT MARKING FOR RESERVED LANE SYMBOL SHALL BE WHITE.
- 3. DIMENSIONS ARE IN METRES.

STANDARD DETAIL

RED IN-LAY RESERVED LANE

DATE:	2021	REFERENCE	APPROVED
SCALE:			FIG. NO.
	1:50		HRM 134

- 1. POSTS 60 mm O.D. HOT DIPPED GALVANIZED COLD ROLLED STEEL (ASTM A53 GRADE A, SCHEDULE 40), ZINC-COATED AT MINIMUM 550 G/SM.
- 2. UNLESS OTHERWISE APPROVED BY ENGINEER, DRILL POST HOLES WITH 125 mm MAXIMUM DIAMETER BIT. STABILIZE GROUND AROUND POSTS WITH CEMENT GROUT AND MECHANICAL COMPACTOR.
- 3. THERE SHALL BE NO EXPOSED (NON-GALVANIZED) STEEL, EXCEPT THE TOP OF THE POSTS (PRIOR TO PLACEMENT OF CAPS).
- 4. POST SPACING OF 2.4 m EXCEPT LESS ON TIGHT TURNS TO MAINTAIN TRAIL WIDTH.
- 5. GALVANIZED STEEL CAPS TO BE SET SECURELY OVER TOP OF POSTS (WELDING NOT PERMITTED).
- RAILS 95-115 mm DIAMETER SMOOTH UNTREATED HEMLOCK WOOD (NO CHECKS, SPLITS OR WIND SHAKES). OUTSIDE EDGES OF ABUTTING ENDS OF RAILS SHALL BE FLUSH (WITHIN 5 mm). PROVIDE FLAT SURFACE FOR FASTENERS 20 mm FROM BACK OF RAILS WHICH CAN BE THE FULL LENGTH OF THE RAILS.
- ENDS OF RAILS SHALL LINE UP WITH CENTRE OF POSTS EXCEPT AT END POSTS WHERE THE RAILS SHALL EXTEND 100 mm PAST THE CENTRE OF POSTS.
 FENCE BRACKETS TO BE GALVANIZED STEEL AND DESIGNED TO ATTACH WOODEN FENCE RAILS WITH A
- 8. FENCE BRACKETS TO BE GALVANIZED STEEL AND DESIGNED TO ATTACH WOODEN FENCE RAILS WITH A FLAT FASTENING SURFACE TO 60 mm O.D. FENCE POSTS. BRACKETS TO HAVE A BASE AND STRAP. BRACKETS TO HAVE 8 mm LAG SCREWS (38 mm LONG) FOR FASTENING BRACKET BASE TO WOOD RAIL, AND 8 mm CARRIAGE BOLTS WITH NUTS FOR FASTENING BRACKET BASE AND STRAP AROUND POST. BASE TO BE BENDABLE TO ALLOW FOR VARIED HORIZONTAL ANGLES BETWEEN SUCCESSIVE RAILS.
- 9. PRE-DRILL WOODEN RAILS FOR INSTALLATION OF BRACKETS.
- 10. BEND FLANGES OF BRACKETS TO ANGLE REQUIRED WHEN FENCE IS ON A HORIZONTAL CURVE.
- 11. MATERIALS AND CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE LATEST REVISIONS OF THE NOVA SCOTIA BUILDING CODE REGULATIONS AND THE NATIONAL BUILDING CODE OF CANADA.
- 12. DIMENSIONS ARE IN MILLIMETRES.

PROPOSED SOIL GROUPINGS

NOTES FOR SHAFT FOUNDATIONS ONLY:

- 1. ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE SHOWN.
- 2. CONCRETE 28 DAY STRENGTH TO BE 35 MPa, CLASS OF EXPOSURE 'C1', AIR CONTENT 5 8%.
- 3. ENGINEER TO CONFIRM SOIL PARAMETERS BEFORE PROCEEDING WITH WORK.
- 4. DESIGN IS FOR DRY SOIL CONDITIONS (NO GROUND WATER TABLE) WITH A MINIMUM γ soil = 18 kN/m³, Kp = 3.5, Ø = 34°.
- 5. WHERE SOUND BEDROCK IS ENCOUNTERED, FOUNDATION CONSTRUCTION MAY BE MODIFIED TO USE ROCK ANCHORS DOWELED INTO ROCK. REFER TO DRAWING No. 74B.1 AND 74B.2.
- 6. ANCHORS TO BE MINIMUM GRADE A307, PLATE WASHERS MINIMUM GRADE 300W.
- 7. CONTRACTOR TO CONFIRM ANCHOR BOLT DIAMETER, LENGTH AND BOLT CIRCLE PRIOR TO PROCEEDING WITH WORK.
- 8. PROPOSED PVC CONDUIT SIZE AND CONFIGURATION INDICATED ON DRAWINGS. CONDUITS ARE ASSUMED TO BE "BUNCHED" AND IN CENTRE OF PEDESTAL. FOR PEDESTAL WITH NOMINAL DIAMETER OF D-NOM, DIAMETER OF "BUNCHED" CONDUIT AT TOP OF CONCRETE SHALL BE D-B MAXIMUM. IF "BUNCHED" DIAMETER AT TOP OF CONCRETE IS GREATER THAN D-B, USE D-ADJ DIA. PEDESTAL.

D-NOM	D-B	D-ADJ
609	150	762
762	250	914
914	300	1067

- 9. CONCRETE MUST BE PLACED IN A SINGLE POUR.
- 10. EMBEDMENT DEPTH OF THE FOUNDATION WAS DERIVED FROM THE ONTARIO MINISTRY OF TRANSPORTATION ENGINEERING STANDARDS BRANCH GUIDELINES FOR THE DESIGN OF HIGH MAST POLE FOUNDATIONS, 4TH Ed. 2004.
- 11. TORSIONAL RESISTANCE OF THE FOUNDATION WAS COMPLETED BASED ON BROM'S TORSION LOADING ANALYSIS OF SHORT SINGLE SHAFT FOUNDATIONS.
- 12. RESIDUAL FRICTIONAL COEFFICIENT (μ) between the circumference of the foundation and soil is to be 0.3.
- 13. WHERE FINISHED GRADE IS LOWER NEAR POLE BASE, HEIGHT OF FOUNDATION TO BE INCREASED AS FOLLOWS:

NOTES FOR SPREAD FOUNDATIONS ONLY:

- 1. ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE SHOWN.
- 2. CONCRETE 28 DAY STRENGTH TO BE 35 MPa, CLASS OF EXPOSURE 'C1', AIR CONTENT 5 8%.
- 3. ENGINEER TO CONFIRM SOIL PARAMETERS BEFORE PROCEEDING WITH WORK.
- 4. DESIGN IS FOR DRY SOIL CONDITIONS (NO GROUND WATER TABLE) WITH A MINIMUM γ soil = 18 kN/m³, Kp = 3.5, Ø = 34°.
- 5. WHERE SOUND BEDROCK IS ENCOUNTERED, FOUNDATION CONSTRUCTION MAY BE MODIFIED TO USE ROCK ANCHORS DOWELED INTO ROCK. REFER TO DRAWING No. 74B.1 AND 74B.2.
- 6. ANCHORS TO BE MINIMUM GRADE A307, PLATE WASHERS MINIMUM GRADE 300W.
- 7. CONTRACTOR TO CONFIRM ANCHOR BOLT DIAMETER, LENGTH AND BOLT CIRCLE PRIOR TO PROCEEDING WITH WORK.
- 8. PROPOSED PVC CONDUIT SIZE AND CONFIGURATION INDICATED ON DRAWINGS. CONDUITS ARE ASSUMED TO BE "BUNCHED" AND IN CENTRE OF PEDESTAL. FOR PEDESTAL WITH NOMINAL DIAMETER OF D-NOM, DIAMETER OF "BUNCHED" CONDUIT AT TOP OF CONCRETE SHALL BE D-B MAXIMUM. IF "BUNCHED" DIAMETER AT TOP OF CONCRETE IS GREATER THAN D-B, USE D-ADJ DIA. PEDESTAL.

D-NOM	D-B	D-ADJ
609	150	762
762	250	914
914	300	1067

- 9. FOOTINGS SHALL BEAR ON UNDISTURBED SOIL, STRUCTURAL FILL OR BEDROCK WITH A MINIMUM SERVICEABILITY LIMIT STATES (SLS) BEARING CAPACITY OF 150kPa AND A MINIMUM ULTIMATE LIMIT STATES (ULS) BEARING CAPACITY OF 250kPa.
- 10. TORSIONAL RESISTANCE ANALYSIS WAS COMPLETED CONSIDERING PASSIVE SOIL PRESSURE AT THE VERTICAL FACE OF THE FOOTINGS AND A FRICTION (μ) between the underside of the FOOTING AND SOIL OF 0.4.
- 11. FINISHED GRADE ELEVATIONS SHALL NOT VARY MORE THAN 150mm OVER A DISTANCE EQUAL TO TWICE THE EMBEDMENT DEPTH.
- 12. AFTER CONSTRUCTION, CUT OFF TOP OF CMP FORMWORK TO 150mm BELOW FINISHED GRADE.

	POL	E TYPE	Ξ	Т	TRAFFIC SIGNAL EQUIPMENT MAST ARMS							
CONFIGURATION	MATERIAL	BASE DIA. (mm)	TOTAL HEIGHT (m) (SEE NOTE 4)	NO.	LENGTH (m)	ORIENTATION	SIGNAL HEADS (PER POLE)	PEDESTRIAN HEADS	STREET LIGHTING	SIGNAGE AREA (m ²)	POLE BASE DESIGN TYPE	HRM STANDARD DETAIL NO.
А	ALUM.	203	5.2	0	N.A.	N.A.	2	2	1@0.4	0	1	68
В	ALUM.	203	5.8	1	4.6	N.A.	2	2	NONE	0.7	2	69
С	ALUM.	203	5.8	2	4.6, TOTAL	180 '	2	2	NONE	0.7	2	69
D	ALUM.	203	5.8	2	3.1 EACH	90*	2	2	NONE	0.7	2	69
Е	ALUM.	254	8.2	0	N.A.	N.A.	0	0	2@1.85	0	2	69
F	ALUM.	254	6.7	1	6.1	N.A.	2	2	NONE	0.7	3	70
G	ALUM.	254	6.7	2	6.1, TOTAL	180	2	2	NONE	0.7	3	70
Н	ALUM.	254	6.7	2	3.6 EACH	90*	2	2	NONE	0.7	3	70
I	ALUM.	254	6.7	1	7.6	N.A.	2	2	NONE	0.7	4	71
J	ALUM.	254	6.7	2	7.6, TOTAL	180	2	2	NONE	0.7	4	71
К	ALUM.	254	6.7	2	4.6 EACH	90°	2	2	NONE	0.7	4	71
L	ALUM.	254	11.3	0	N.A.	N.A.	3	2	2@1.85	0	4	71
М	ALUM.	254	9.7	1	7.6	N.A.	2	2	1@1.8	0.7	4A	71A
Ν	STEEL	254	6.1	1	12.2	N.A.	4	2	NONE	0.7	5	72
0	STEEL	254	6.1	2	12.2, TOTAL	180	5	2	NONE	0.7	5	72
Ρ	STEEL	254	6.1	2	7.6 EACH	90*	5	2	NONE	0.7	5	72
Q	STEEL	343	10.7	1	12.2	N.A.	4	2	2@3.6m	0.7	5A	72A
R	STEEL	343	10.7	2	12.2, TOTAL	180	5	2	2@3.6m	0.7	5A	72A
S	STEEL	343	10.7	2	7.6 EACH	90°	5	2	2@3.6m	0.7	5A	72A
т	STEEL	343	6.1	1	18.3	N.A.	4	2	NONE	0.7	6	73
U	STEEL	343	6.1	2	18.3, TOTAL	180'	5	2	NONE	0.7	6	73
V	STEEL	343	6.1	2	10.7 EACH	90*	5	2	NONE	0.7	6	73
W	STEEL	343	10.7	1	18.3	N.A.	4	2	2@3.6m	0.7	6A	73A
х	STEEL	343	10.7	2	18.3, TOTAL	180 '	5	2	2@3.6m	0.7	6A	73A
Y	STEEL	343	10.7	2	10.7 EACH	90*	5	2	2@3.6m	0.7	6A	73A
Z	STEEL	343	6.1	1	21.3	N.A.	4	2	NONE	0.7	7	74
AA	STEEL	343	6.1	2	21.3, TOTAL	180'	5	2	NONE	0.7	7	74
AB	STEEL	343	6.1	2	12.2 EACH	90*	5	2	NONE	0.7	7	74
AC	STEEL	343	10.7	1	21.3	N.A.	4	2	2@3.6m	0.7	7A	74A
AD	STEEL	343	10.7	2	21.3, TOTAL	180 '	5	2	2@3.6m	0.7	7A	74A
AE	STEEL	343	10.7	2	12.2 EACH	90*	5	2	2@3.6m	0.7	7A	74A
AF	ALUM.	254	13.4	0	N.A.	N.A.	0	0	2@3.6m	0.7	8	74X

<u>NOTES</u>

- 1. REFER TO HALIFAX STANDARD DRAWINGS 68 TO 74X FOR ADDITIONAL NOTES AND DESIGN CRITERIA.
- 2. SEE STANDARD DRAWING NO. HRM 74B FOR REVISED POLE BASE FOUNDATION DESIGN WHICH MAY BE PERMITTED IN ROCK CONDITIONS.
- 3. TRAFFIC SIGNAL POLE DESIGN CRITERIA MAY DIFFER FROM THAT AS SHOWN ON THIS TABLE. SHOULD THIS OCCUR, DESIGN ENGINEER SHALL BE CONSULTED FOR INTERPRETATION OF TABLE AND SELECTION OF POLE BASE TYPE, OR ADDITIONAL DESIGN IF REQUIRED.
- 4. TOTAL POLE HEIGHT INDICATED INCLUDES A 0.61 m HIGH TRANSFORMER BASE.

ANCHORAGE SCHEDULE					
REF. DWG.	'L' MIN.	'D'	'd'	'A' MIN	DOWELS
68	1200	610	425	2500	4 – 25M
69	1200	760	575	2500	4 – 25M
70, 71, 71A	1300	760	570	3000	4 – 30M
72, 72A	1500	760	565	3500	4 – 35M
73, 73A	1800	760	565	3500	6 — 35M
74, 74A	1800	910	715	4000	6 – 35M
74X	1300	760	570	3000	4 – 30M

- 1. SOUND ROCK TO BE CONFIRMED BY ENGINEER.
- 2. MIN. LENGTH 'L' IS REQUIRED TO SUIT LENGTH OF ANCHOR BOLTS.
- 3. DRILLED HOLE IN ROCK TO BE CLEAN AND DRY BEFORE GROUTING. GROUT TO BE MASTERFLOW 816 CABLE GROUT OR APPROVED EQUAL, INSTALLED IN ACCORDANCE WITH MANUFACTURER'S DIRECTIONS.
- 4. THIS DRAWING TO BE USED IN CONJUNCTION WITH HRM 74B.1.
- 5. ANCHOR BOLTS TO BE DESIGNED BY AND STAMPED BY AN ENGINEER LICENSED TO PRACTICE IN NS.

1	H/	LIF/	\X
	STA	NDARD DET	AIL
		DATION REV WELING INT	
DATE:	2021	REFERENCE	APPROVED
SCALE:	NTS		FIG No.: HRM 74B.2

- I. CONCRETE 28 DAY COMPRESSIVE STRENGTH TO BE 35 MPa.
- 2. PROVIDE MIN. 50mm COVER FOR ALL REBAR (UNLESS NOTED OTHERWISE).
- 3. PROVIDE GROUNDING PLATE FOR CABINET.
 - F. TYPICAL STREET LIGHT POWER ENCLOSURES ARE 610mm WIDE BY 1830mm LONG BY 1830mm HIGH. THE ENCLOSURE MUST BE CENTERED ON THE CONCRETE PAD AND THE CONDUIT LAYOUT MUST ALIGN WITH THE MOUNTING BACKBOARD INSIDE THE ENCLOSURE AS PER THE TYPICAL STREET LIGHT POWER ENCLOSURE "RED BOOK" DETAILS HRM 109-HRM 111.
- 5. ALL CONDUIT FITTINGS AND GROUNDING SHALL BE TO CANADIAN ELECTRICAL CODE.
- CONTROLLER CABINET ANCHORS ARE ASSUMED TO BE 6–19mm DIA.
 x 380mm LONG A307 GALVANIZED STEEL J–BOLTS.
- SUITABILITY OF ANCHORS IS TO BE CONFIRMED BY EQUIPMENT MANUFACTURER PRIOR TO INSTALLATION.
- 3. ALL DIMENSIONS IN MILLIMETERS.
- REBAR TO CONFORM TO CAN/CSA G30.18-09 GRADE 400W DEFORMED BARS.
- 10. MAXIMUM CONDUIT DIAMETER = 150mm. PROVIDE AT LEAST 25mm CLEAR SPACE BETWEEN CONDUITS.
- MAXIMUM NUMBER OF CONDUITS PER BASE = 10 x 150mm DIA. CONDUITS OR EQUIVALENT AREA OF SMALLER CONDUITS. (LOCALLY ADJUST REBAR SPACINGS IF NECESSARY).

