ANNEX D - TRAFFIC IMPACT STUDY

70 FIRST LAKE DRIVE DEVELOPMENT TRAFFIC IMPACT STUDY FINAL REPORT

PREPARED FOR:
FIRST MUTUAL PROPERTIES

Project No. 221-00147-01

JULY 2022

TABLE OF CONTENTS

1	INTRODUCTION	1
2	STUDY AREA DESCRIPTIONS	3
3	BACKGROUND TRAFFIC	4
4	TRIP GENERATION, DISTRIBUTION, AND	
	ASSIGNMENT	5
5	INTERSECTION OPERATIONAL ANALYSIS	7
5.1	Analysis Scenarios	
5.1 5.2	Int #1: Metropolitan Avenue at First Lake Drive	9
· · ·	Int #1: Metropolitan Avenue at First Lake Drive	9 10
5.2	Int #1: Metropolitan Avenue at First Lake Drive	9 10
5.2 5.3	Int #1: Metropolitan Avenue at First Lake Drive	9 10
5.2 5.3 5.4	Int #1: Metropolitan Avenue at First Lake Drive	9 10 11
5.2 5.3 5.4	Int #1: Metropolitan Avenue at First Lake Drive	9 10 11

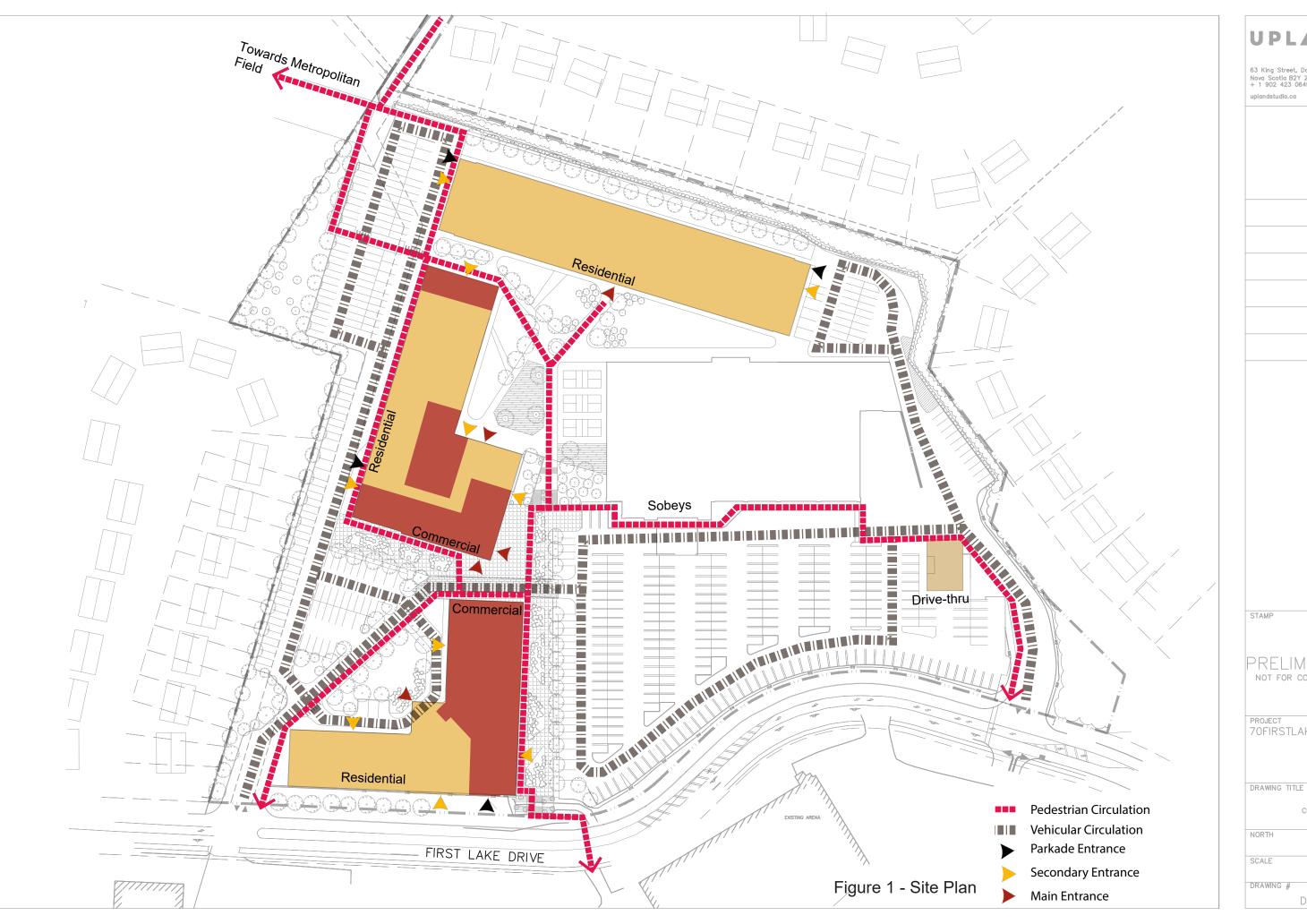
APPENDICES

- A TRAFFIC VOLUME DATA
- **B** INTERSECTION PERFORMANCE ANALYSIS
- C WARRANT ANALYSIS

1 INTRODUCTION

Background

Plans are being prepared by First Mutual Properties for a mixed development including both commercial and residential units at 70 First Lake Drive in Lower Sackville, Nova Scotia. The proposed development is planned to include 25 townhomes, 125 low-rise apartment units, 680 high-rise apartment units and 10,000 ft² of commercial space, as shown in Figure 1. Halifax Regional Municipality (HRM) has requested that a Traffic Impact Study be completed to review the impacts to the adjacent road network.


WSP Canada Inc. has been retained to complete a Traffic Impact Study (TIS) for the proposed 70 First Lake Drive Development.

A Traffic Impact Study Usually Considers Four Questions A TIS usually consists of determining answers for the following questions:

- 1. What is the existing transportation situation adjacent to the study site? How have volumes changed historically?
- 2. What transportation changes are expected at key Study Area locations? How many vehicle and active mode trips are expected to be generated by the proposed development during weekday peak hours? What routes are the trips expected to use to travel within and through the Study Area?
- 3. What transportation impacts will occur on Study Area roads, sidewalks, and intersections?
- 4. What transportation improvements are required to mitigate project impacts on Study Area travel? Are there transportation modifications that should be made to improve the travel experience for all users?

Study Objectives

- Develop projected 2030 background weekday AM and PM peak hourly volumes for Study Intersections.
- 2. Estimate the number of weekday AM and PM peak hour trips that will be generated by the proposed development.
- 3. Distribute and assign site generated trips to Study Intersections to project 2030 peak hourly volumes that include site generated trips.
- 4. Evaluate impacts of site generated traffic on the performance of Study Intersections.
- 5. Complete warrant analyses, as necessary, for Study Intersections and recommend improvements that may be needed at Study Intersections to mitigate the impacts of site development.

UPLAND

63 King Street, Dartmouth Nova Scotia B2Y 2R7 + 1 902 423 0649

PROJECT 70FIRSTLAKEDRIVE

CONCEPT PLAN

1:1200

DRAWING#

2 STUDY AREA DESCRIPTIONS

Description of Existing Development

70 First Lake Drive is currently occupied with a Sobey's store, Tim Hortons' with a Drivethrough, a Call Centre, Glass Repair Shop, Recreation Sport Centre with a batting cage and small commercial stores. There are two access points from First Lake Driveway, one driveway to the west and one driveway to the east. The existing commercial stores to remain with the proposed development include the Sobey's Store and the Tim Horton's is moving to a new location (more to the east), however, remaining on the same site.

Description of Proposed Development

The proposed 70 First Lake Drive Development is planned to include 25 townhomes, 125 low-rise apartment units, 680 high-rise apartment units and 10,000ft² of commercial space. The access to the proposed development will be via the existing driveways on First Lake Drive, as shown in Figure 2. It is anticipated that the development will be completed by 2030.

Figure 2 – Study Area with the Study Intersections

Existing Study Road Descriptions *Metropolitan Avenue* is a collector roadway with two lanes with one lane in each direction. The posted speed limit within the study area of 50 km/h. There are transit services for Route #82 and #182.

First Lake Drive is a collector road that has two lanes with one lane in each direction supplemented with left-turn lanes at roadways/driveways. The posted speed limit of 50 km/h. There are transit services for Route #82 and 182.

Existing Study Intersection Descriptions *Intersection #1 – Metropolitan Avenue at First Lake Drive* is a 3-leg signalized intersection with shared lane approaches and marked pedestrian crossings on all approaches.

Intersection #2 – First Lake Drive at West Driveway is a 3-leg intersection with stop control on the West Driveway approach. First Lake Drive has two lanes with one in each direction and an eastbound left-turn lane. No marked pedestrian crossings at this intersection.

Intersection #3 – First Lake Drive at East Driveway is a 4-leg intersection with stop control on the East Driveway/Sackville Arena Driveway approaches. First Lake Drive has two lanes with one in each direction and an eastbound and westbound left-turn lane. No marked pedestrian crossings at this intersection.

Turning Movement Counts Turning movement volumes were collected by WSP on Wednesday, February 2nd, 2022 at Study Intersection 1 during the morning (7:00-9:00AM) and afternoon (4:00-6:00PM) peak periods and at Study Intersection 3 during the morning (7:00-9:00AM), midday (11:30AM-1:30PM) and afternoon (4:00-6:00PM) peak periods. Intersection counts have been tabulated in 15-minute intervals with peak hours indicated by shaded areas. Turning movement volumes are provided in Tables A-1 to A-2, Appendix A.

Covid-19 Adjustment Factor

It should be noted that a 5% Covid-19 factor was applied.

Traffic Growth Rate

An annual growth rate of 0.5% was applied to the background volumes for this Traffic Impact Study.

Network Re-Distribution for Tim Horton's With the Tim Horton's being re-located on the site, from the west more to the east, the trips from the west driveway have been re-distributed to the east driveway.

4 TRIP GENERATION, DISTRIBUTION, AND ASSIGNMENT

Prepared Trip Generation Estimates When using the published trip generation rates in the *Trip Generation Manual (Institute of Transportation Engineers)*, the transportation engineer's objective should be to provide a realistic estimate of the number of trips that will be generated by the proposed development.

Anticipated Land Use for the Proposed Development

The proposed development is expected to include 25 townhomes, 125 low-rise apartment units, 680 high-rise apartment units and 10,000ft² of commercial space. The commercial development is unknown at this time and therefore, was assumed to be a Strip Retail Plaza.

Estimation of Trips Generated by the Proposed Development

Trip generated by Strip Retail Plaza (Land Use 822) are estimated for the AM and PM peak hours of traffic by the leasable square footage. Single Family Attached Housing (Land Use 215), Multifamily Housing Low-Rise (Land Use 220) and Multi-family Housing High-Rise (Land Use 222) are estimated for the AM and PM peak hours of traffic by unit count. Trip generation estimates for the proposed development were prepared using published rates from *Trip Generation Manual*, 11th Edition (Institute of Transportation Engineers, Washington, 2021).

Reductions to Trip Generation Estimates The total trip generation estimate for the proposed development were reduced by 10% to account for cycling and walking (non-auto) trips. Trips generated by the development were reduced by 5% to account for on-site synergies between residential and retail uses on the site.

Trips Generated by the Proposed Development – Full Build-Out Trip generation estimates for the proposed development are summarized in Table 1. It is estimated that the development will generate:

- 215 two-way primary vehicle trips (78 entering and 137 exiting) during the AM peak hour; and,
- 308 two-way pass-by vehicle trips (173 entering and 135 exiting) during the PM peak hour.

Table 1 - Trip Generation Estimates for the Proposed Development - 830 Units

			Trip Genera	ation Rates	3	Tı	rip Generati	Trip Generation Estimates ³		
Land Use ¹	Units ²	AM	AM Peak		Peak	AM Peak		PM Peak		
		In	Out	In	Out	In	Out	In	Out	
Single-Family Attached Housing	25.0	0.15	0.33	0.32	0.25	4	8	8	6	
(Land Use 215)	Units	0.13	0.55	0.32	0.23	4	0	0		
Multi-family Housing (Low-Rise)	125.0	0.10	0.18	0.32	0.19	12	23	40	24	
(Land Use 220)	Units	0.10	0.10	0.32	0.19	12	23	40	24	
Multi-family Housing (High-Rise)	680.0	0.09	0.18	0.18	0.14	62	121	122	96	
(Land Use 222)	Units	0.03	0.10	0.10	0.14	02	121	122	30	
Strip Retail Plaza ⁴	10.0	1.42	0.94	3.30	3.30	14	9	33	33	
(Land Use 822)	KGLA	1.42	0.34	3.30	3.30	<u>†</u>	9	33	33	
Trip Genera	tion Estimates	for Propos	sed Develo	pment - Fu	ll Build-Out	92	161	203	159	
	10% Reduction for Non-Auto Trips ⁵					9	16	20	16	
		5% F	Reduction f	or On-Site	Synergies ⁶	5	8	10	8	
Primary Tri	p Estimate for	the Propos	sed Develo	pment - Fu	ll Build-Out	78	137	173	135	

- NOTES: 1. Land Use Codes are from Trip Generation, 11th Edition, (Institute of Transportation Engineers, Washington, 2021).
 - $2. \ Residential \ Units' for Single-Family \ Attached \ Housing \ and \ Multi-family \ and' Gross \ Leasable \ Area \ x \ 1000 \ SF' for \ Strip \ Retail \ Plaza.$
 - 3. Rates are 'vehicles per hour per unit'; trips generated are 'vehicles per hour for peak hours'.
 - 4. Commercial uses associated with the development have yet to be identified, therefore, the commercial space was assumed to be Strip Retail Plaza.
 - 5. A 10% reduction for non-auto trips generated by the residential units and strip retail plaza have been used to account for cycling and walking trips.
 - 6. A 5% reduction has be used for trips generated by the residential development and retail plaza to account for on-site synergies within the development.

Background traffic and the proposed development generated trips were distributed to the Study Intersections based on counted volumes and local knowledge of the area considering major trip origins and destinations in the region. The estimated directional distributions are provided below.

Direction	Distribution	Description
North	5%	(Beaver Bank and surrounding areas)
South	50%	(Sackville, Bedford and surrounding areas)
West	20%	(Middle Sackville and surrounding areas)
East	25%	(Lakeview Airport and surrounding areas)

Volume Figures

Traffic volume figures were prepared for future traffic scenarios for 2030 without and with the proposed development and they are included in Appendix A.

5 INTERSECTION OPERATIONAL ANALYSIS

Intersection Level of Service (LOS) Analysis was completed to estimate how intersections may be expected to operate into the future without and with site generated trips. This section of the report addresses how left-turn lane warrants and traffic signal warrants were conducted and how each intersection was evaluated. The following subsections identify each study intersection and summarize the results of the operational analysis.

Left-Turn Lane Warrant Analysis

Left-turn movements on a two-lane street may cause both operational and safety problems. Operational problems result as a vehicle stopped waiting for an opportunity to turn across 'heavy' opposing traffic causes a queue of stopped vehicles to form. Safety problems result from rear end collisions when a stopped left-turning vehicle is struck by an advancing vehicle, or from head-on or right-angle collisions when a left-turning vehicle is struck by an opposing vehicle.

The Geometric Design Standards for Ontario Highways Manual contains nomographs for left-turn lane analysis for two lane streets at unsignalized intersections. The analysis method, which is normally used by WSP Atlantic to evaluate the need for left-turn lanes, uses a series of nomographs that consider speed, advancing volumes, left-turns as a percentage of advancing volumes, and opposing volumes. A point, based on 'opposing' and 'advancing' volumes, plotted to the right of the 'warrant line' of the appropriate '% left-turns' and 'approach speed' nomograph, indicates that a left-turn lane is warranted for the conditions used in the analysis. Similarly, a point that is plotted to the left of the warrant line indicates that a left-turn lane is not warranted.

No left-turn lane warrant analyses were completed for this project, as the site accesses have a left-turn lane on First Lake Drive.

Traffic Signal Warrant Analysis

A signal warrant analysis is completed to determine if the installation of traffic signals at an intersection will provide a positive impact on total intersection operation. That is, the benefits in time saved and improved safety that will accrue to vehicles entering from a side street will exceed the impact that signals will have in time lost and potential additional collisions for vehicles approaching the intersection on the main street.

The Canadian Traffic Signal Warrant Matrix Analysis (Transportation Association of Canada (TAC), 2005) considers 100 warrant points as an indication that traffic signals will provide a positive impact. Signal warrant analysis uses vehicular and pedestrian volumes, and intersection, roadway and study area characteristics to calculate a warrant point value.

Traffic signal warrant analyses are included in Appendix B.

Intersection Capacity Analysis Results Synchro 11.0 software have been used for performance evaluation of the Study Intersections. Summaries of the results are provided in the following sub-sections and detailed results of the analyses are included in Appendix C.

Intersection Level of Service Analysis

The level or quality of performance of an intersection in terms of traffic movement is determined by a level of service (LOS) analysis. LOS for intersections is defined in terms of delay, which is a measure of driver discomfort and frustration, fuel consumption, and increased travel time.

LOS criteria, as shown in Table 2, are stated in terms of average control delay per vehicle which includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

Table 2 - Level of Service Criteria

Signalized Intersections Control Delay (Seconds per Vehicle)	LOS Description	Roundabouts and Two Way Stop Controlled (TWSC) Intersections Control Delay (Seconds per Vehicle)
Less than 10.0	Very low delay; most vehicles do not stop (Excellent)	Less than 10.0
Between 10.0 and 20.0	Higher delay; most vehicles stop (Very Good)	Between 10.0 and 15.0
Between 20.0 and 35.0	Higher level of congestion; number of vehicles stopping is significant, although many still pass through intersection without stopping (Good)	Between 15.0 and 25.0
Between 35.0 and 55.0	Congestion becomes noticeable; vehicles must sometimes wait through more than one red light; many vehicles stop (Satisfactory)	Between 25.0 and 35.0
Between 55.0 and 80.0	Vehicles must often wait through more than one red light; considered by many agencies to be the limit of acceptable delay	Between 35.0 and 50.0
Greater than 80.0	This level is considered to be unacceptable to most drivers; occurs when arrival flow rates exceed the capacity of the intersection (Unacceptable)	Greater than 50.0

5.1 ANALYSIS SCENARIOS

Summary Analysis Scenarios Considered Scenario 1 – Future 2030 without Site: Represents future 2030 traffic volumes on the existing road network, including the existing traffic control and lane configurations of the Study Intersections.

Scenario 2 – Future 2030 with Site: Represents future 2030 traffic volumes on the existing road network, including the existing traffic control and lane configurations of the Study Intersections with the proposed development.

5.2 INT #1: METROPOLITAN AVENUE AT FIRST LAKE DRIVE

Intersection #1 – Metropolitan Avenue at First Lake Drive:

Operational performance results for this intersection are provided in Table 3 for both the AM and PM peak hours.

The intersection is expected to operate within HRM acceptable limits during the AM and PM peak hours. Minimal changes in the operational performance of this intersection are expected with the addition of the proposed development. All movements are expected to operate at with a v/c ratio of 0.80 or better.

Table 3 - Intersection Capacity Analysis: Metropolitan Avenue at First Lake Drive

LOS	•	(sec/veh), v/c Ration) by Intersection M	o, and 95 th %ile	Overall Intersecti
Criteria	First Lake Drive	Metropolit	an Avenue	on
	WB-LR	NB-TR	SB-LT	Delay
Scena	ario 1 - Future 203	30 without Site AM	Peak Hour (Page	C-1)
Delay	14.1	9.6	13.4	
v/c	0.47	0.46	0.48	12.2
Queue	33.7	36.5	43.2	
Sce	nario 2 - Future 20	030 with Site AM P	eak Hour (Page C	C-7)
Delay	17.5	11.1	15.0	
v/c	0.62	0.54	0.51	14.4
Queue	52.8	43.1	44.4	
Scena	ario 1 - Future 203	30 without Site PM	Peak Hour (Page	C-4)
Delay	19.8	14.8	10.9	
v/c	0.61	0.69	0.26	15.8
Queue	60.9	72.4	24.3	
Scer	nario 2 - Future 20	30 with Site PM Po	eak Hour (Page C	-10)
Delay	28.5	20.9	14.8	
v/c	0.75	0.80	0.35	22.7
Queue	112.3	125.7	35.4	

5.3 INT #2: FIRST LAKE DRIVE AT WEST DRIVEWAY

Intersection #2 – First Lake Drive at West Driveway:

Operational performance results for this intersection are provided in Table 4 for both the AM and PM peak hours. A traffic signal warrant was completed for the 2030 Future with Site scenario, and it was determined that:

• 2030 Future with Site: Traffic signals are not warranted (17 Warrant Points, Table B-1, Appendix B)

The intersection is expected to operate within HRM acceptable limits during the AM and PM peak hours. Negligible changes in the operational performance of this intersection are expected with the addition of the proposed development. All movements are expected to operate at with a v/c ratio of 0.20 or better.

Table 4 - Intersection Capacity Analysis: First Lake Drive at West Driveway

LOS			Delay (sec/veh), vue (m) by Interse	/c Ratio,	-	Overall Intersecti
Criteria		First Lake Drive		West D	rive w ay	on
	EB-L	EB-T	WB-TR	SB-L	SB-R	Delay
	Scena	ario 1 - Future 203	30 without Site AM	Peak Hour (Page	C-2)	
Delay	7.8	0.0	0.0	13.0	9.5	
v/c	0.11	0.06	0.09	0.01	0.14	4.6
Queue	2.9	0.0	0.0	0.3	3.9	
	Sce	nario 2 - Future 20	030 with Site AM P	eak Hour (Page 0	C-8)	
Delay	7.9	0.0	0.0	14.2	10.2	
v/c	0.05	0.15	0.15	0.09	0.14	3.0
Queue	1.2	0.0	0.0	2.2	3.9	
	Scena	ario 1 - Future 203	30 without Site PM	Peak Hour (Page	: C-5)	_
Delay	8.1	0.0	0.0	15.7	10.0	
v/c	0.15	0.08	0.11	0.01	0.20	4.9
Queue	4.2	0.0	0.0	0.4	5.8	
	Scer	nario 2 - Future 20	30 with Site PMP	eak Hour (Page C	:-11)	
Delay	8.4	0.0	0.0	21.4	10.9	
v/c	0.12	0.20	0.20	0.14	0.15	3.2
Queue	3.1	0.0	0.0	4.0	4.3	

5.4 INT #3: FIRST LAKE DRIVE AT EAST DRIVEWAY

Intersection #3 – First Lake Drive at East Driveway:

Operational performance results for this intersection are provided in Table 5 for both the AM and PM peak hours. A traffic signal warrant was completed for the 2030 Future with Site scenario, and it was determined that:

• 2030 Future with Site: Traffic signals are not warranted (19 Warrant Points, Table B-2, Appendix B)

The intersection is expected to operate within HRM acceptable limits during the AM and PM peak hours. Negligible changes in the operational performance of this intersection are expected with the addition of the proposed development. All movements are expected to operate at with a v/c ratio of 0.27 or better.

Table 5 - Intersection Capacity Analysis: First Lake Drive at East Driveway

LOS				Delay (sec/veh), eue (m) by Inters	v/c Ratio, section Movement			Overall Intersectio
Criteria		First Lak	ce Drive		Sackville Arena	East Dr	ive w ay	n
	EB-L	EB-TR	WB-L	WB-TR	NB-LTR	SB-L	SB-R	Delay
		Scen	ario 1 - Future 20	30 without Site	AM Peak Hour (Page	C-3)		
Delay	7.5	0.0	7.4	0.0	9.9	10.4	9.2	
v/c	0.00	0.06	0.00	0.09	0.00	0.05	0.01	1.9
Queue	0.1	0.0	0.0	0.0	0.1	1.4	0.3	
		Sce	enario 2 - Future	2030 with Site Al	√l Peak Hour (Page €	C-9)		
Delay	7.9	0.0	7.5	0.0	14.0	15.5	9.7	
v/c	0.11	0.08	0.00	0.10	0.01	0.11	0.16	5.1
Queue	3.0	0.0	0.0	0.0	0.2	3.0	4.5	
		Scen	ario 1 - Future 20	30 without Site F	PM Peak Hour (Page	e C-6)		
Delay	7.7	0.0	7.5	0.0	10.8	11.8	9.7	
v/c	0.02	0.07	0.00	0.12	0.02	0.09	0.06	3.1
Queue	0.4	0.0	0.1	0.0	0.6	2.4	1.5	
		Sce	nario 2 - Future 2	030 with Site PM	l Peak Hour (Page C	:-12)		'
Delay	8.3	0.0	7.5	0.0	20.4	23.9	11.1	
v/c	0.17	0.09	0.00	0.15	0.06	0.24	0.27	6.5
Queue	5.1	0.0	0.1	0.0	1.5	7.3	8.9	

6 SUMMARY, CONCLUSION & RECOMMENDATIONS

6.1 SUMMARY

Background	1. Plans are being prepared by First Mutual Properties for a mixed development including bot
•	commercial and residential units at 70 First Lake Drive in Lower Sackville, Nova Scotia.
Description of Existing Development	2. 70 First Lake Drive is currently occupied with a Sobey's store, Tim Hortons' with a Drive through, a Call Centre, Glass Repair Shop, Recreation Sport Centre with a batting cage an small commercial stores. There are two access points from First Lake Driveway, one driveway to the west and one driveway to the east. The existing commercial stores to remain with the proposed development include the Sobey's Store and the Tim Horton's is moving to a new location (more to the east), however, remaining on the same site.
Description of the Proposed Development	3. The proposed development is planned to include 25 townhomes, 125 low-rise apartment units 680 high-rise apartment units and 10,000ft ² of commercial space. Halifax Regiona Municipality (HRM) has requested that a Traffic Impact Study be completed to review th impacts to the adjacent road network.
	4. It is anticipated that the development will be completed by 2030.
Proposed Site Access	5. The access to the proposed development will be via the existing driveways on First Lake Drive
Study Area Roads	6. <i>Metropolitan Avenue</i> is a collector roadway with two lanes with one lane in each direction. The posted speed limit within the study area is 50 km/h. There are transit services for Rout #82 and #182.
	7. <i>First Lake Drive</i> is a collector road that has two lanes with one lane in each directio supplemented with left-turn lanes at roadways/driveways. The posted speed limit is 50 km/l. There are transit services for Route #82 and 182.
Turning Movement Counts	8. Turning movement volumes were collected by WSP on Wednesday, February 2 nd , 2022 a Study Intersection 1 during the morning (7:00-9:00AM) and afternoon (4:00-6:00PM) pea periods and at Study Intersection 3 during the morning (7:00-9:00AM), midday (11:30AM 1:30PM) and afternoon (4:00-6:00PM) peak periods.
Background Traffic Volumes & Re-	 9. Projected 2030 peak hour future background volumes include: 5% Covid-19 Adjustment Factor; and, 0.5% annual growth between 2021-2030.
distribution of Tim Horton's Trips	10. With the Tim Horton's being re-located on the site, from the west more to the east, the trip from the west driveway have been re-distributed to the east driveway.

Estimation of Proposed Development Trips

- 11. Trip generation estimates for the proposed Exhibition Expansion were prepared using rates published in *Trip Generation*, 11th Edition (Institute of Transportation Engineers, Washington, 2021).
- 12. It is estimated that the development will generate:
 - 215 two-way primary vehicle trips (78 entering and 137 exiting) during the AM peak hour; and.
 - 308 two-way pass-by vehicle trips (173 entering and 135 exiting) during the PM peak hour.

Trip Distribution and Assignment

13. Proposed development generated trips were distributed to the Study Intersections based on counted volumes and local knowledge of the area considering major trip origins and destinations in the region. Trips were distributed to the north (5%), south (50%), west (20%), and east (25%).

Analysis Scenarios Considered

- 14. **Scenario 1 Future 2030 without Site:** Represents future 2030 traffic volumes on the existing road network, including the existing traffic control and lane configurations of the Study Intersections.
- 15. **Scenario 2 Future 2030 with Site:** Represents future 2030 traffic volumes on the existing road network, including the existing traffic control and lane configurations of the Study Intersections with the proposed development.

Warrant Analysis Summary

- 16. Warrant reviews were completed for traffic signals for Scenario 2 to identify road network upgrades warranted with the proposed development. No left-turn lane warrants were completed, as there are existing left-turn lanes on First Lake Drive.
- 17. It was determined that traffic signals are not warranted at any Study Intersection.

Summary – Intersection Capacity Analysis

- 18. Intersection performance analysis was completed using *Synchro 11* at the Study Intersections.
- 19. All study intersections are expected to operate within HRM acceptable limits during the AM and PM peak hours. Negligible or minimal changes in the operational performance of this intersection are expected with the addition of the proposed development. All movements are expected to operate at with a v/c ratio of 0.80 or better.

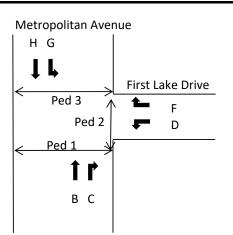
6.2 CONCLUSIONS

Conclusion

20. Trips generated by 70 First Lake Drive Development are expected to have a minimal or negligible impact on the operational performance of the Study Intersections and the adjacent street network.

APPENDIX

TRAFFIC VOLUME DATA

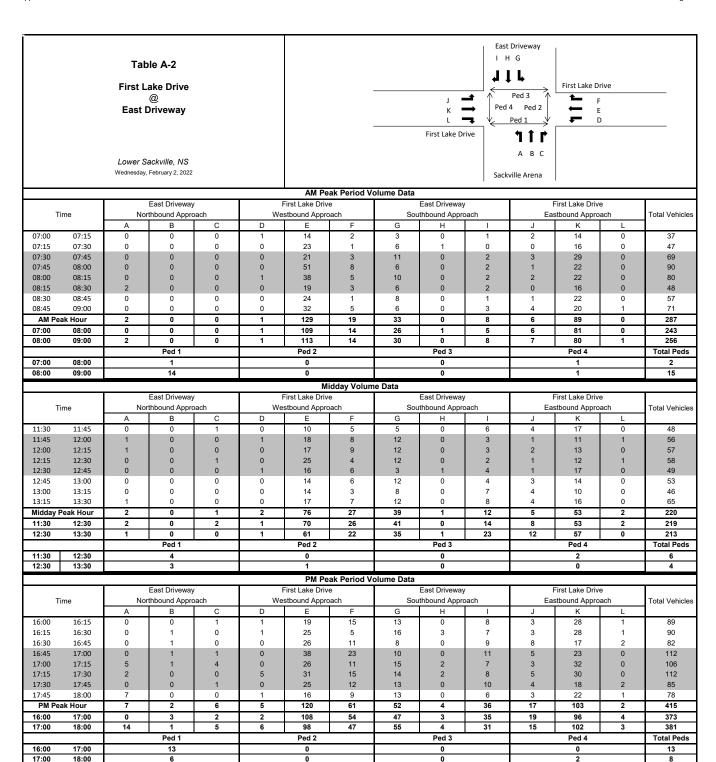

Table A-1

Metropolitan Avenue

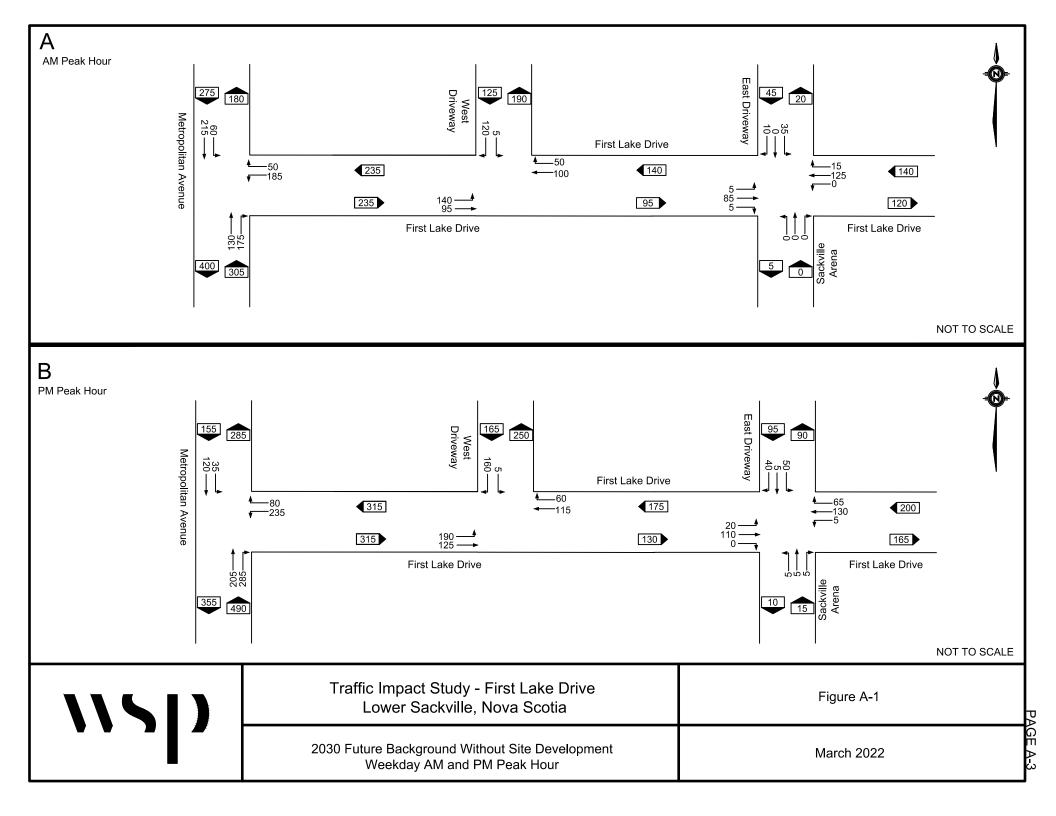
@

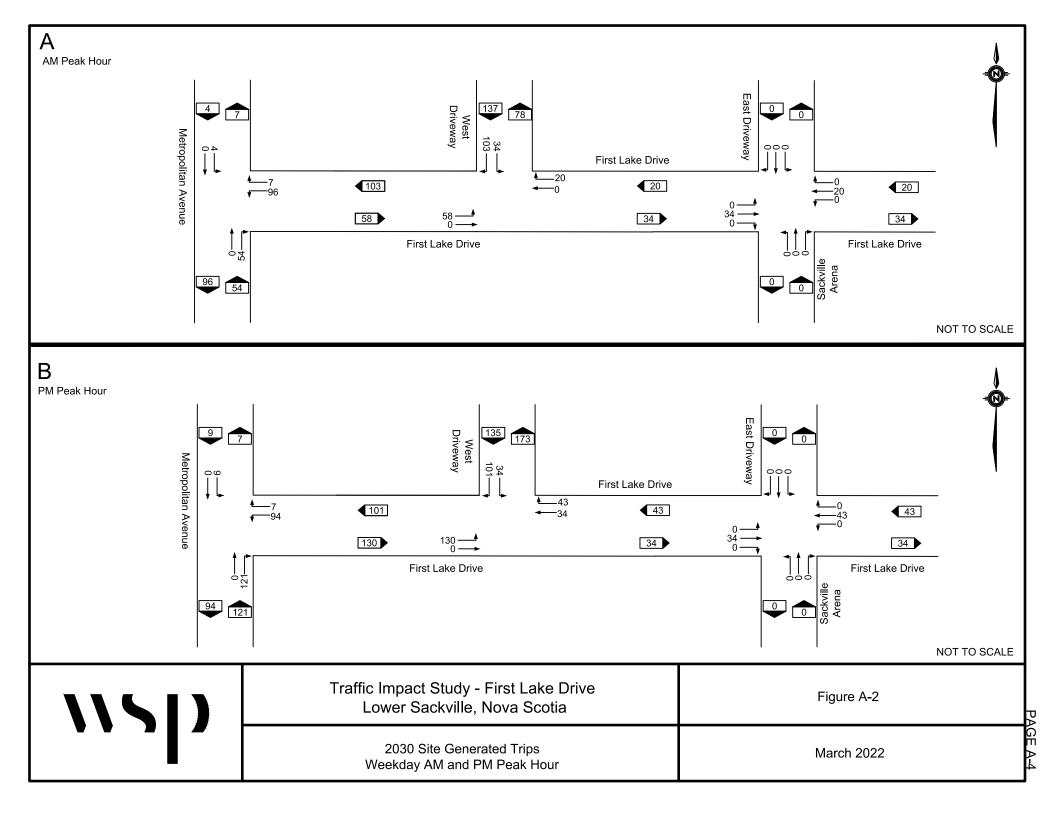
First Lake Drive

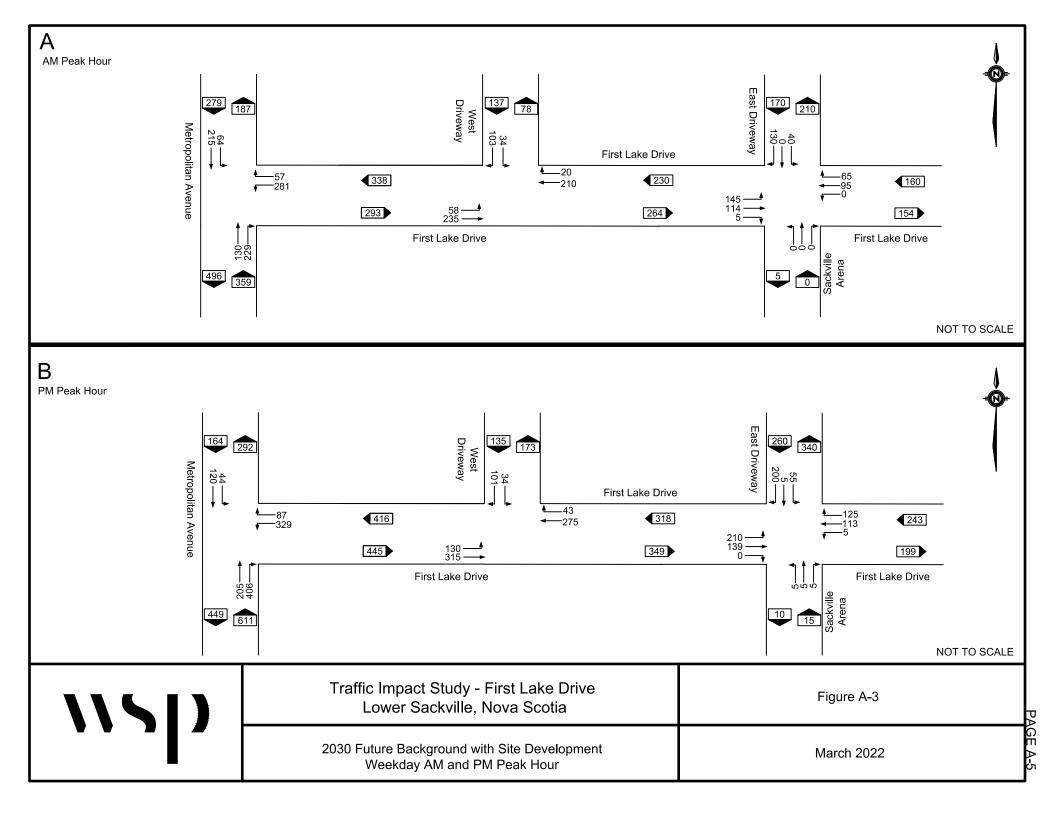
Lower Sackville, NS Wednesday, February 2, 2022



			AM Pea	k Period Vo	lume Data			
		•	an Avenue		ike Drive	-	an Avenue	Total
T	ime	Northboun	d Approach	Westboun	d Approach	Southboun	d Approach	Vehicles
		В	С	D	F	G	Н	Vernoies
07:00	07:15	4	22	23	1	12	32	94
07:15	07:30	14	31	33	6	12	28	124
07:30	07:45	17	48	28	8	13	43	157
07:45	08:00	21	36	51	12	5	45	170
08:00	08:15	17	43	54	10	16	36	176
08:15	08:30	14	27	28	10	6	18	103
08:30	08:45	36	43	42	7	15	57	200
08:45	09:00	55	47	48	19	20	82	271
AM Pe	ak Hour	122	160	172	46	57	193	750
07:00	08:00	56	137	135	27	42	148	545
08:00	09:00	122	160	172	46	57	193	750
		Pe	ed 1	Pe	ed 2	Pe	d 3	Total Peds
07:00	08:00		4		1		0	5
08:00	09:00		8		1		0	9


			PM Pea	ık Period Vo	lume Data			
		Metropolit	an Avenue	First La	ke Drive	Metropolit	an Avenue	Tatal
Ti	ime	Northboun	d Approach	Westbound	d Approach	Southbound Approach		Total Vehicles
		В	С	D	F	G	Н	Verlicies
16:00	16:15	43	70	44	17	8	26	208
16:15	16:30	50	65	50	17	8	21	211
16:30	16:45	47	63	61	18	4	29	222
16:45	17:00	49	61	58	23	8	35	234
17:00	17:15	40	68	59	29	8	21	225
17:15	17:30	54	63	59	12	6	17	211
17:30	17:45	42	52	57	17	6	15	189
17:45	18:00	33	58	58	13	7	28	197
PM Pea	ak Hour	190	255	237	82	26	102	892
16:00	17:00	189	259	213	75	28	111	875
17:00	18:00	169	241	233	71	27	81	822
		Pe	Ped 1		d 2	Ped 3		Total Peds
16:00	17:00		4		0		0	4
17:00	18:00		4	,	1		0	5


WSP Canada Inc. February 2022


Appendix A - Traffic Volume Data Page A-2

WSP Canada Inc. February 2022

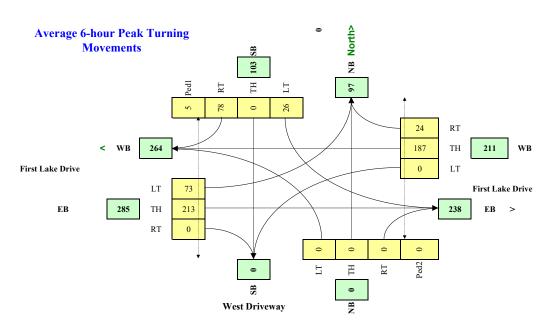
APPENDIX

B

INTERSECTION
PERFORMANCE ANALYSIS

2005 Canadian Traffic Signal Warrant Matrix Analysis

Table: B-1 - First Lake Drive at West Driveway 2030 Future w Site


Main Street (name)	´		Dire	Direction (EW or NS)		EW	Date:		March 2022	
Side Street (name)			Direction (EW or NS)		NS	City:		Lower Sackville, NS		
Lane Configuration		Excl LT	Th & LT	Through or Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes		
First Lake Drive	WB				1		210	1		
First Lake Drive	EB	1		1			10,000	1		
	NB									
West Driveway	SB	1				1				
Other input		Speed	Trucks	Bus Rt	Median					

Other input		Speed	Trucks	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
First Lake Drive	EW	50	2.0%	у	0.0
West Driveway	NS	50	2.0%	n	

	Ped1	Ped2	Ped3	Ped4
	NS	NS	EW	EW
	W Side	E Side	N Side	S side
7:00 - 8:00	1	0	0	1
8:00 - 9:00	1	0	0	14
11:30 - 12:30	4	0	0	2
12:30 - 13:30	3	1	0	0
15:30 - 16:30	13	0	0	0
16:30 - 17:30	6	0	0	2
Total (6-hour peak)	28	1	0	19
Average (6-hour peak)	5	0	0	3

Demographics		
Elementary School	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	400,000
Central Business District	(y/n)	n

Traffic Input	NB				SB		WB			EB		
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT
7:00 - 8:00	0	0	0	35	0	105	0	210	20	60	235	0
8:00 - 9:00	0	0	0	25	0	75	0	160	15	45	175	0
11:30 - 12:30	0	0	0	15	0	50	0	120	15	45	140	0
12:30 - 13:30	0	0	0	15	0	50	0	120	15	45	140	0
15:30 - 16:30	0	0	0	30	0	85	0	235	35	110	270	0
16:30 - 17:30	0	0	0	35	0	100	0	275	45	130	315	0
Total (6-hour peak)	0	0	0	155	0	465	0	1,120	145	435	1,275	0
Average (6-hour peak)	0	0	0	26	0	78	0	187	24	73	213	0

$$W = [C_{bt}(X_{v-v}) / K_1 + (F(X_{v-p}) L) / K_2] \times C_i$$

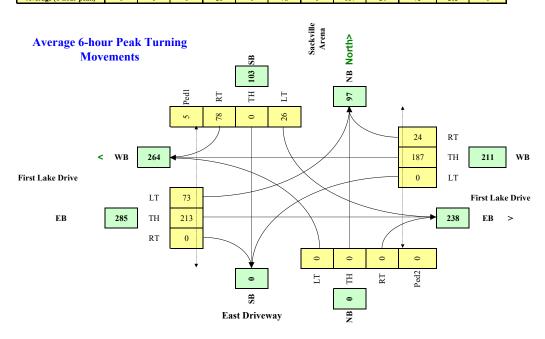
$$W = 17 14 3$$

$$Veh Ped$$
NOT Warranted

WSP Canada Inc. March 2022

2005 Canadian Traffic Signal Warrant Matrix Analysis

Table: B-2 - First Lake Drive at East Driveway 2030 Future w Site


Main Street (name)	First Lake Drive			Dire	Direction (EW or NS)			Date:		March 2022		
Side Street (name)	Ea	st Drivev	vay	Direction (EW or NS)			NS		City:	Lower Sackville, NS		
Lane Configuration		Excl LT	Th & LT	Through or Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes				
First Lake Drive	WB	1			1		500	1				
First Lake Drive	EB	1			1		10,000	1				
Sackville Arena	NB			1						•		
East Driveway	SB	1			1							
Other input	1	Speed	Trucks	Rus Rt	Median							

Other input		Speed	Trucks	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
First Lake Drive	EW	50	2.0%	у	0.0
East Driveway	NS	50	2.0%	n	

	Ped1	Ped2	Ped3	Ped4
	NS	NS	EW	EW
	W Side	E Side	N Side	S side
7:00 - 8:00	1	0	0	1
8:00 - 9:00	1	0	0	14
11:30 - 12:30	4	0	0	2
12:30 - 13:30	3	1	0	0
15:30 - 16:30	13	0	0	0
16:30 - 17:30	6	0	0	2
Total (6-hour peak)	28	1	0	19
Average (6-hour peak)	5	0	0	3

Demographics		
Elementary School	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	400,000
Central Business District	(y/n)	n

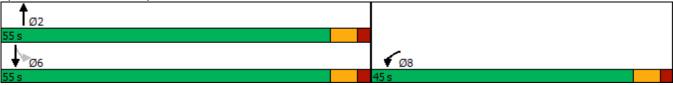
Traffic Input		NB			SB			WB			EB	
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT
7:00 - 8:00	0	0	0	35	0	105	0	210	20	60	235	0
8:00 - 9:00	0	0	0	25	0	75	0	160	15	45	175	0
11:30 - 12:30	0	0	0	15	0	50	0	120	15	45	140	0
12:30 - 13:30	0	0	0	15	0	50	0	120	15	45	140	0
15:30 - 16:30	0	0	0	30	0	85	0	235	35	110	270	0
16:30 - 17:30	0	0	0	35	0	100	0	275	45	130	315	0
Total (6-hour peak)	0	0	0	155	0	465	0	1,120	145	435	1,275	0
Average (6-hour peak)	0	0	0	26	0	78	0	187	24	73	213	0

$$W = [C_{bt}(X_{v-v}) / K_1 + (F(X_{v-p}) L) / K_2] \times C_i$$

$$W = 19 \quad 16 \quad 3$$

$$Veh \quad Ped$$

$$NOT Warranted$$


WSP Canada Inc. March 2022

APPENDIX

C WARRANT ANALYSIS

	•	•	†	<i>></i>	\	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		f)			र्स	
Traffic Volume (vph)	185	50	130	175	60	215	
Future Volume (vph)	185	50	130	175	60	215	
Satd. Flow (prot)	1729	0	1689	0	0	1842	
Flt Permitted	0.962					0.852	
Satd. Flow (perm)	1714	0	1689	0	0	1585	
Satd. Flow (RTOR)	16		95				
Lane Group Flow (vph)	255	0	331	0	0	299	
Turn Type	Prot		NA		Perm	NA	
Protected Phases	8		2			6	
Permitted Phases					6		
Total Split (s)	45.0		55.0		55.0	55.0	
Total Lost Time (s)	6.0		6.0			6.0	
Act Effct Green (s)	12.9		16.6			16.6	
Actuated g/C Ratio	0.31		0.40			0.40	
v/c Ratio	0.47		0.46			0.48	
Control Delay	14.1		9.6			13.4	
Queue Delay	0.0		0.0			0.0	
Total Delay	14.1		9.6			13.4	
LOS	В		Α			В	
Approach Delay	14.1		9.6			13.4	
Approach LOS	В		Α			В	
Queue Length 50th (m)	13.0		10.2			13.7	
Queue Length 95th (m)	33.7		36.5			43.2	
Internal Link Dist (m)	194.9		85.0			233.3	
Turn Bay Length (m)							
Base Capacity (vph)	1611		1639			1536	
Starvation Cap Reductn	0		0			0	
Spillback Cap Reductn	0		0			0	
Storage Cap Reductn	0		0			0	
Reduced v/c Ratio	0.16		0.20			0.19	
Intersection Summary							
Cycle Length: 100							
Actuated Cycle Length: 41.9	9						
Control Type: Actuated-Und							
Maximum v/c Ratio: 0.48							
Intersection Signal Delay: 1	2.2			In	tersection	LOS: B	
Intersection Capacity Utiliza						of Service	e B
Analysis Period (min) 15							
Snlits and Phases: 1: Me	tropolitan A	vonuo 8 I	Firet Lake	Drivo			

Splits and Phases: 1: Metropolitan Avenue & First Lake Drive

Synchro 11 Report March 2022 WSP Canada Inc

		ayc	0-2
2030 AM	Future	withou	ıt Site

	•	→	+	•	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	†	1•		ሻ	7
Traffic Volume (veh/h)	140	95	90	50	5	120
Future Volume (Veh/h)	140	95	90	50	5	120
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	152	103	98	54	5	130
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)		219				
pX, platoon unblocked						
vC, conflicting volume	152				532	125
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	152				532	125
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	89				99	86
cM capacity (veh/h)	1429				454	926
Direction, Lane #	EB 1	EB 2	WB 1	SB 1	SB 2	
Volume Total	152	103	152	5	130	
Volume Left	152	0	0	5	0	
Volume Right	0	0	54	0	130	
cSH	1429	1700	1700	454	926	
Volume to Capacity	0.11	0.06	0.09	0.01	0.14	
Queue Length 95th (m)	2.9	0.0	0.0	0.3	3.9	
Control Delay (s)	7.8	0.0	0.0	13.0	9.5	
Lane LOS	Α			В	Α	
Approach Delay (s)	4.7		0.0	9.7		
Approach LOS				Α		
Intersection Summary						
Average Delay			4.6			
Intersection Capacity Utiliz	ation		28.9%	IC	U Level o	of Service
Analysis Period (min)			15			
310 1 01100 (111111)			.,,			

Synchro 11 Report March 2022 WSP Canada Inc

Page C-3

		J	
2030 AM	Future	withou	t Site

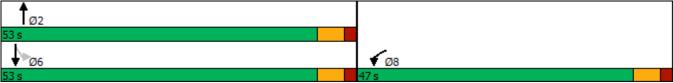

	۶	→	•	•	←	•	•	†	<i>></i>	/	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	f)		7	f)			4		7	f)	
Traffic Volume (veh/h)	5	85	5	1	125	15	1	1	1	35	1	10
Future Volume (Veh/h)	5	85	5	1	125	15	1	1	1	35	1	10
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	5	92	5	1	136	16	1	1	1	38	1	11
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	152			97			254	258	94	250	253	144
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	152			97			254	258	94	250	253	144
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	100	95	100	99
cM capacity (veh/h)	1429			1496			688	643	962	700	648	903
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	SB 2					
Volume Total	5	97	1	152	3	38	12					
Volume Left	5	0	1	0	1	38	0					
Volume Right	0	5	0	16	1	0	11					
cSH	1429	1700	1496	1700	741	700	875					
Volume to Capacity	0.00	0.06	0.00	0.09	0.00	0.05	0.01					
Queue Length 95th (m)	0.1	0.0	0.0	0.0	0.1	1.4	0.3					
Control Delay (s)	7.5	0.0	7.4	0.0	9.9	10.4	9.2					
Lane LOS	А		Α		Α	В	Α					
Approach Delay (s)	0.4		0.0		9.9	10.1						
Approach LOS					Α	В						
Intersection Summary												
Average Delay			1.9									
Intersection Capacity Utiliza	ation		19.0%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									
,												

Synchro 11 Report WSP Canada Inc March 2022

1: Metropolitan Avenue & First Lake Drive

	•	•	†	/	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1>			4
Traffic Volume (vph)	235	80	205	285	35	120
Future Volume (vph)	235	80	205	285	35	120
Satd. Flow (prot)	1721	0	1685	0	0	1842
Flt Permitted	0.964					0.830
Satd. Flow (perm)	1707	0	1685	0	0	1545
Satd. Flow (RTOR)	19	•	104	-		
Lane Group Flow (vph)	342	0	533	0	0	168
Turn Type	Prot		NA		Perm	NA
Protected Phases	8		2			6
Permitted Phases					6	
Total Split (s)	42.0		58.0		58.0	58.0
Total Lost Time (s)	6.0		6.0		-00.0	6.0
Act Effct Green (s)	15.6		20.9			20.9
Actuated g/C Ratio	0.32		0.42			0.42
v/c Ratio	0.61		0.69			0.42
Control Delay	19.8		14.8			10.9
Queue Delay	0.0		0.0			0.0
Total Delay	19.8		14.8			10.9
LOS	В		В			В
Approach Delay	19.8		14.8			10.9
Approach LOS	19.0 B		14.0 B			В
Queue Length 50th (m)	21.9		26.6			8.6
Queue Length 95th (m)	60.9		72.4			24.3
Internal Link Dist (m)	194.9		85.0			233.3
. ,	194.9		00.0			233.3
Turn Bay Length (m)	1337		1589			1451
Base Capacity (vph)						
Starvation Cap Reductn	0		0			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.26		0.34			0.12
Intersection Summary						
Cycle Length: 100	^					
Actuated Cycle Length: 49.2						
Control Type: Actuated-Unc	coordinated					
Maximum v/c Ratio: 0.69						
Intersection Signal Delay: 1					tersection	
Intersection Capacity Utiliza	ation 64.9%			IC	U Level	of Service
Analysis Period (min) 15						

Splits and Phases: 1: Metropolitan Avenue & First Lake Drive


Synchro 11 Report March 2022 WSP Canada Inc

	۶	→	←	•	/	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	†	1•		ሻ	7
Traffic Volume (veh/h)	190	125	115	60	5	160
Future Volume (Veh/h)	190	125	115	60	5	160
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	207	136	125	65	5	174
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)		219				
pX, platoon unblocked						
vC, conflicting volume	190				708	158
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	190				708	158
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	85				99	80
cM capacity (veh/h)	1384				341	888
Direction, Lane #	EB 1	EB 2	WB 1	SB 1	SB 2	
Volume Total	207	136	190	5	174	
Volume Left	207	0	0	5	0	
Volume Right	0	0	65	0	174	
cSH	1384	1700	1700	341	888	
Volume to Capacity	0.15	0.08	0.11	0.01	0.20	
Queue Length 95th (m)	4.2	0.0	0.0	0.4	5.8	
Control Delay (s)	8.1	0.0	0.0	15.7	10.0	
Lane LOS	Α			С	В	
Approach Delay (s)	4.9		0.0	10.2		
Approach LOS				В		
Intersection Summary						
Average Delay			4.9			
Intersection Capacity Utiliza	ation		33.6%	IC	U Level o	of Service
Analysis Period (min)			15	.0		
rangolo i onou (iliii)			10			

5. I list Lake Dive	u Lasi	DIIVCV	ray							00111110	itaro mian	out oito
	۶	→	\rightarrow	•	←	•	•	†	/	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f.		ሻ	₽			4		*	f)	
Traffic Volume (veh/h)	20	110	1	5	130	65	5	5	5	50	5	40
Future Volume (Veh/h)	20	110	1	5	130	65	5	5	5	50	5	40
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	22	120	1	5	141	71	5	5	5	54	5	43
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	212			121			361	386	120	358	352	176
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	212			121			361	386	120	358	352	176
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)									<u> </u>			
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	98			100			99	99	99	91	99	95
cM capacity (veh/h)	1358			1467			553	537	931	581	562	867
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	SB 2					
Volume Total	22	121	5	212	15	54	48					
Volume Left	22	0	5	0	5	54	0					
Volume Right	0	1	0	71	5	0	43					
cSH	1358	1700	1467	1700	632	581	820					
Volume to Capacity	0.02	0.07	0.00	0.12	0.02	0.09	0.06					
Queue Length 95th (m)	0.02	0.07	0.00	0.12	0.02	2.4	1.5					
Control Delay (s)	7.7	0.0	7.5	0.0	10.8	11.8	9.7					
Lane LOS	Α.	0.0	7.5 A	0.0	10.0 B	В	9.1 A					
Approach Delay (s)	1.2		0.2		10.8	10.8	^					
Approach LOS	1.2		0.2		В	В						
Intersection Summary												
Average Delay			3.1									
Intersection Capacity Utiliza	tion		30.2%	IC	CU Level of	of Service			Α			
Analysis Period (min)			15									

*	_	T	_	-	↓	
WBL	WBR	NBT	NBR	SBL	SBT	
W		ĵ.			ર્વ	
	57		229	64		
				0		
	0	1669	0	0		
367	0		0	0	304	
				Perm		
		2			6	
				6		
47.0		53.0		53.0	53.0	
6.0		6.0			6.0	
20.8		14.6			17.1	
1582		1601			1470	
		0			0	
		0			0	
0.23		0.24			0.21	
}						
oordinated						
1.4			In	tersection	LOS: B	
tion 70.2%			IC	U Level o	of Service	C
	281 281 281 1738 0.960 1722 12 367 Prot 8 47.0 6.0 15.0 0.33 0.62 17.5 0.0 17.5 B 17.5 B 20.8 52.8 194.9 1582 0 0 0.23	281 57 281 57 1738 0 0.960 1722 0 12 367 0 Prot 8 47.0 6.0 15.0 0.33 0.62 17.5 0.0 17.5 B 17.5 B 20.8 52.8 194.9 1582 0 0 0 0.23	281 57 130 281 57 130 1738 0 1669 0.960 1722 0 1669 12 120 367 0 390 Prot NA 8 2 47.0 53.0 6.0 6.0 15.0 17.4 0.33 0.39 0.62 0.54 17.5 11.1 B B B 17.5 11.1 B B B 17.5 11.1 B B B 20.8 14.6 52.8 43.1 194.9 85.0 1582 1601 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	281 57 130 229 281 57 130 229 1738 0 1669 0 0.960 1722 0 1669 0 12 120 367 0 390 0 Prot NA 8 2 47.0 53.0 6.0 6.0 15.0 17.4 0.33 0.39 0.62 0.54 17.5 11.1 0.0 0.0 17.5 11.1 B B B 17.5 11.1 B B B 17.5 11.1 B B B 20.8 14.6 52.8 43.1 194.9 85.0 1582 1601 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	281 57 130 229 64 281 57 130 229 64 1738 0 1669 0 0 0.960 1722 0 1669 0 0 12 120 367 0 390 0 0 Prot NA Perm 8 2 6 47.0 53.0 53.0 6.0 6.0 15.0 17.4 0.33 0.39 0.62 0.54 17.5 11.1 0.0 0.0 17.5 11.1 B B 17.5 11.1 B B 20.8 14.6 52.8 43.1 194.9 85.0 1582 1601 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	281 57 130 229 64 215 281 57 130 229 64 215 1738 0 1669 0 0 1842 0.960

Splits and Phases: 1: Metropolitan Avenue & First Lake Drive

	۶	→	+	4	/	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	†	ĥ		ሻ	7
Traffic Volume (veh/h)	58	235	210	20	34	103
Future Volume (Veh/h)	58	235	210	20	34	103
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	63	255	228	22	37	112
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)		219				
pX, platoon unblocked						
vC, conflicting volume	250				620	239
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	250				620	239
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	95				91	86
cM capacity (veh/h)	1316				430	800
Direction, Lane #	EB 1	EB 2	WB 1	SB 1	SB 2	
Volume Total	63	255	250	37	112	
Volume Left	63	0	0	37	0	
Volume Right	0	0	22	0	112	
cSH	1316	1700	1700	430	800	
Volume to Capacity	0.05	0.15	0.15	0.09	0.14	
Queue Length 95th (m)	1.2	0.0	0.0	2.2	3.9	
Control Delay (s)	7.9	0.0	0.0	14.2	10.2	
Lane LOS	Α			В	В	
Approach Delay (s)	1.6		0.0	11.2		
Approach LOS				В		
Intersection Summary						
Average Delay			3.0			
Intersection Capacity Utiliza	ation		28.9%	IC	U Level o	of Service
Analysis Period (min)			15			

5. I list Lake Drive	u Lasi	DIIVCV	ay							2000 7 1111	nui oito	
	۶	→	\rightarrow	•	←	•	•	†	/	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	ĥ			4		ሻ	ĵ»	
Traffic Volume (veh/h)	145	114	5	1	95	65	1	1	1	40	1	130
Future Volume (Veh/h)	145	114	5	1	95	65	1	1	1	40	1	130
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	158	124	5	1	103	71	1	1	1	43	1	141
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	174			129			689	618	126	582	586	138
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	174			129			689	618	126	582	586	138
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF(s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	89			100			100	100	100	89	100	85
cM capacity (veh/h)	1403			1457			277	359	924	386	375	910
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	SB 2					
Volume Total	158	129	1	174	3	43	142					
Volume Left	158	0	1	0	1	43	0					
Volume Right	0	5	0	71	1	0	141					
cSH	1403	1700	1457	1700	401	386	901					
Volume to Capacity	0.11	0.08	0.00	0.10	0.01	0.11	0.16					
Queue Length 95th (m)	3.0	0.0	0.0	0.0	0.2	3.0	4.5					
Control Delay (s)	7.9	0.0	7.5	0.0	14.0	15.5	9.7					
Lane LOS	Α.	0.0	Α.	0.0	В	C	Α					
Approach Delay (s)	4.3		0.0		14.0	11.1	, ,					
Approach LOS	4.0		0.0		В	В						
Intersection Summary												
Average Delay			5.1									
Intersection Capacity Utiliza Analysis Period (min)	ation		35.1% 15	IC	CU Level of	of Service			Α			
Alialysis Feliou (IIIIII)			IJ									

	•	•	†	/	\	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		ĵ.			ર્ન	
Traffic Volume (vph)	329	87	205	406	44	120	
Future Volume (vph)	329	87	205	406	44	120	
Satd. Flow (prot)	1731	0	1661	0	0	1839	
Flt Permitted	0.962					0.609	
Satd. Flow (perm)	1716	0	1661	0	0	1134	
Satd. Flow (RTOR)	15		145				
_ane Group Flow (vph)	453	0	664	0	0	178	
Turn Type	Prot		NA		Perm	NA	
Protected Phases	8		2			6	
Permitted Phases					6		
Total Split (s)	43.0		57.0		57.0	57.0	
Total Lost Time (s)	6.0		6.0			6.0	
Act Effct Green (s)	22.6		29.4			29.4	
Actuated g/C Ratio	0.35		0.45			0.45	
/c Ratio	0.75		0.80			0.35	
Control Delay	28.5		20.9			14.8	
Queue Delay	0.0		0.0			0.0	
Total Delay	28.5		20.9			14.8	
.OS	C		C			В	
Approach Delay	28.5		20.9			14.8	
Approach LOS	C		C			В	
Queue Length 50th (m)	43.9		49.6			12.9	
Queue Length 95th (m)	112.3		125.7			35.4	
nternal Link Dist (m)	194.9		85.0			233.3	
Turn Bay Length (m)	10 1.0		00.0			200.0	
Base Capacity (vph)	1096		1358			908	
Starvation Cap Reductn	0		0			0	
Spillback Cap Reductn	0		0			0	
Storage Cap Reductn	0		0			0	
Reduced v/c Ratio	0.41		0.49			0.20	
ntersection Summary							
Cycle Length: 100							
Actuated Cycle Length: 65.4	4						
Control Type: Actuated-Unc							
Maximum v/c Ratio: 0.80							
ntersection Signal Delay: 2	2.7			In	tersection	LOS: C	
ntersection Capacity Utiliza					U Level		
Analysis Period (min) 15				10	J LOVOI (J. 001 VIOC	· -

Splits and Phases: 1: Metropolitan Avenue & First Lake Drive

	•	→	+	4	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	<u> </u>	<u> </u>	7>	WDIX	ሻ	7
Traffic Volume (veh/h)	130	315	275	43	34	101
Future Volume (Veh/h)	130	315	275	43	34	101
Sign Control	100	Free	Free	70	Stop	101
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	141	342	299	47	37	110
Pedestrians	171	07Z	200	7/	- 01	110
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)		NOHE	NOHE			
		219				
Upstream signal (m) pX, platoon unblocked		219				
	346				946	322
vC, conflicting volume vC1, stage 1 conf vol	340				940	322
vC2, stage 2 conf vol vCu, unblocked vol	346				946	322
•					6.4	
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)	0.0				2.5	2.2
tF (s)	2.2				3.5	3.3
p0 queue free %	88				86	85
cM capacity (veh/h)	1213				256	718
Direction, Lane #	EB 1	EB 2	WB 1	SB 1	SB 2	
Volume Total	141	342	346	37	110	
Volume Left	141	0	0	37	0	
Volume Right	0	0	47	0	110	
cSH	1213	1700	1700	256	718	
Volume to Capacity	0.12	0.20	0.20	0.14	0.15	
Queue Length 95th (m)	3.1	0.0	0.0	4.0	4.3	
Control Delay (s)	8.4	0.0	0.0	21.4	10.9	
Lane LOS	Α			С	В	
Approach Delay (s)	2.4		0.0	13.6		
Approach LOS				В		
Intersection Summary						
Average Delay			3.2			
Intersection Capacity Utiliz	ation		37.6%	IC	U Level o	of Service
Analysis Period (min)			15			

	<u> </u>											
	•	-	\rightarrow	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĵ.		ሻ	ĵ»			4		*	f)	
Traffic Volume (veh/h)	210	139	1	5	113	125	5	5	5	55	5	200
Future Volume (Veh/h)	210	139	1	5	113	125	5	5	5	55	5	200
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	228	151	1	5	123	136	5	5	5	60	5	217
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	259			152			960	876	152	816	809	191
vC1, stage 1 conf vol										0.0		
vC2, stage 2 conf vol												
vCu, unblocked vol	259			152			960	876	152	816	809	191
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)								0.0	V. <u> </u>		0.0	V. <u>_</u>
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	83			100			97	98	99	76	98	74
cM capacity (veh/h)	1306			1429			150	236	895	250	259	851
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	SB 2					
Volume Total	228	152	5	259	15	60	222					
Volume Left	228	0	5	209	5	60	0					
	0	1	0	136	5	0	217					
Volume Right cSH	1306		1429	1700	249	250	809					
		1700										
Volume to Capacity	0.17	0.09	0.00	0.15	0.06	0.24	0.27					
Queue Length 95th (m)	5.1	0.0	0.1	0.0	1.5	7.3	8.9					
Control Delay (s)	8.3	0.0	7.5	0.0	20.4	23.9	11.1					
Lane LOS	A		A		C	C	В					
Approach Delay (s)	5.0		0.1		20.4	13.8						
Approach LOS					С	В						
Intersection Summary												
Average Delay			6.5									
Intersection Capacity Utiliza	ation		47.9%	IC	CU Level of	of Service			Α			
Analysis Period (min)			15									