Appendix 5

Traffic Impact Study

Table of Contents

Chapter Contents Page
1.0 Introduction 1
2.0 Study Area Descriptions 4
3.0 Trip Generation, Distribution, and Assignment 10
4.0 Intersection Performance Analysis 12
4.1 Traffic Signal Warrant Analysis 12
4.2 Turn Lane Warrant Analysis 12
4.3 Intersection Level of Service Analysis 13
5.0 Summary, Recommendations, and Conclusions 17
Appendix A: Intersection Turning Movement Counts Traffic Volume Diagrams Left Turn Lane Warrants Right Turn Lane Warrants Traffic Signal Warrant
Appendix B: Level of Service Analysis

Prepared by:

Mike Connors, P.Eng.
Greg O'Brien, P.Eng.
Ken O'Brien, P.Eng.

WSP Canada Inc.
1 Spectacle Lake Drive
Dartmouth, NS B3B 1X7

Phone: 902-835-9955
Fax: 902-835-1645
Email: mike.connors@wspgroup.com

1.0 I ntroduction

Background

A Traffic Impact Study Usually Considers Four Questions

Plans are being prepared by Marque Investments Ltd. for the development of "Windgate Village", a mixed use residential / commercial subdivision in Beaver Bank, NS. The proposed development is located at PID\# 41043597, a large undeveloped parcel located between "Capilano Country Estates" and "Rivendale Estates", two residential subdivisions with frontages along Windgate Drive (See Figure 1).

The proposed development will include a mix of residential and commercial land uses. The south end of the parcel - located adjacent to Windgate Drive - includes commercial developments and a mix of multi-unit, townhouse, and detached single family residential units. The north end of the parcel, which will be accessed via existing residential streets, will comprise detached single family residential units only. It is anticipated that buildout of the development will be completed by 2025.

WSP Canada Inc. has been retained to complete a Traffic Impact Study satisfactory to the Halifax Regional Municipality (HRM).

A Traffic Impact Study usually consists of determining answers for the following questions:

1. What are the existing traffic situations on roads adjacent to the study site? How have traffic volumes increased historically?
2. What traffic changes are expected at Study Area intersections? How many vehicle trips will be generated by the proposed development during weekday peak hours? How will the traffic be distributed at the exits from the development and to Study Area roads and intersections?
3. What traffic impacts \mathbf{w} ill occu \mathbf{r} on Study Area roads and intersections? How will level of service of roads and intersections be affected?
4. What road o rintersec tion impro vements are requir ed to mitigate project impacts on Study Area traffic movements?

The following are the primary objectives of this Study:

1. Develop projected 2025 background weekday AM and PM peak hourly volumes for Study Area roads that do not include trips generated by proposed site development.
2. Estimate the number of weekday AM and PM peak hour trips that will be generated by the proposed development.
3. Distribute and assign site generated trips to Study Area intersections.
4. Add site generated trips to projected 2025 background peak hourly volumes to provide projected volumes that include site generated trips.
5. Evaluate impacts of site generated traffic on the performance and level of service of study intersections.
6. Complete traffic signal warrant analyses, as necessary, for intersections in the vicinity of the proposed development.
7. Complete left-turn lane warrants, as necessary, for intersections on Windgate Drive that access the proposed development.
8. Recommend improvements that may be needed at study intersections to mitigate the impacts of site development.

2.0 Study Area Descriptions

Site Description

Road and Intersection Descriptions

The proposed site is an approximately 83 hectare undeveloped parcel located between "Capilano Country Estates" and "Rivendale Estates", two residential subdivisions between Beaver Bank Road and Windsor Junction Road. The south end of the site will be accessed via a new driveway to Windgate Drive and street connections to Rivendale Drive and Capilano Drive. The north end of the site will be accessed via existing local streets including O'Leary Drive and Briancrest Road. A road connection between the north and south portions of the site is not included in the development concept.

Windgate Drive is a 2-lane collector road that runs east-west approximately 4.7 km between Beaver Bank Road and Windsor Junction Road. In the vicinity of the Study Area, it has gravel shoulders and open ditches; the posted speed limit is $70 \mathrm{~km} / \mathrm{h}$. Annual average daily traffic volumes on Windgate Drive just west of Rivendale Drive are approximately 3,600 vehicles per day (vpd).

Photo 1: Looking east on Windgate Drive. The proposed development site is to the left of the photo.

Beaver Bank Road is a 2-lane collector road that runs north-south approximately 21 km between Lower Sackville and East Uniacke Road. In the vicinity of Windgate Drive, it has curb and gutter with sidewalk on the east side and gravel shoulders and open ditches on the west side. Annual average daily traffic volumes on Beaver Bank Road just north of Windgate Drive are approximately 14,700 vehicles per day (vpd).

The Beaver Bank Road - Windgate Drive intersection is unsignalized, with stop control on Windgate Drive. There is an exclusive left turn lane on the Beaver Bank Road southbound approach; all other approaches are single lane.

Windsor Junction Road is a 2-lane collector road that runs north-south approximately 3.5 km between Cobequid Road and Fall River Road. In the vicinity of Windgate Drive it has gravel shoulders and open ditches on both sides. Annual average daily traffic volumes on Windsor Junction Road just south of Windgate Drive are approximately 3,700 vehicles per day (vpd).

Road and Intersection Descriptions (Continued)

Public Transportation

Proposed Site Access
(South End of Development)

The Windgate Drive - Windsor Junction Road intersection is unsignalized, with stop control on the Windgate Drive approach. All approaches are single lane.

Rivendale Drive and O'Leary Drive are 2-lane paved local residential streets located west of the proposed development. Rivendale Drive provides access from the south end of the site to Windgate Drive, and O'Leary Drive will provide access (via other local streets) between the north end of the development and Beaver Bank Road. Capilano Drive, Briancrest Road, Terry Roa d, and Tay lor Drive are 2-lane paved local residential streets located east of the proposed development. Capilano Drive, B riancrest Road, and Terry Road will connect the development south to Windgate Drive, while Taylor Drive provides a connection northeast toward Fall River. Each street has a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$.

Halifax Transit operates Route \#400 (formerly Beaver Bank Community Transit) on Beaver Bank Road between Beaver Bank Villa and the Sackville Terminal, where it provides connection to additional routes including the Metrolink service. The route has stops just north of Windgate Drive.

The south end of the site will be accessed via new street connections to Windgate Drive, Rivendale Drive, and Capilano Drive. The proposed connection to Windgate Drive is located approximately 200m west of Terry Road (See Photo 2 and Photo 3).

Stopping sight distances (SSD) - measured from a driver eye height of 1.05 m to a 150 mm object - were observed on the Windgate Drive eastbound and westbound approaches to a location in the vicinity of the proposed access intersection. Observations indicated SSD greater than 150 meters on the eastbound approach, which exceeds the minimum 134 m required for an assumed operating speed of $80 \mathrm{~km} / \mathrm{h}$ on a $+1 \%$ approach grade. On the westbound approach, observations indicated SSD of approximately 96 m , which is less than the recommended minimum of 128 m for $80 \mathrm{~km} / \mathrm{h}$ operating speed on a $+4 \%$ approach grade. Further investigation should be completed to determine a final location, and to determine whether modifications to the existing road profile are necessary to improve sight distance.

Photo 2: Looking east (to the left) on Windgate Drive from the proposed site access Intersection.

Photo 3: Looking west (to the right) on Windgate Drive from the proposed site access Intersection

Connections to Rivendale Drive and Capilano Drive will also provide access to the south end of the development. Sight distance (See Photo 4 to Photo 7) on the approaches at both intersections appears adequate.

Photo 4: Looking south (to the left) on Rivendale Drive from the proposed site access Intersection.

Photo 5: Looking north (to the right) on Rivendale Drive from the proposed site access Intersection

Photo 6: Looking north (to the left) on Capilano Drive from the proposed site access Intersection.

Photo 7: Looking south (to the right) on Capilano Drive from the proposed site access Intersection

Proposed Site Access (North End of Development)

The north end of the site will be accessed via connections to O'Leary Drive and Briancrest Road. O'Leary Drive (Photo 8) will be extended from its existing terminus across the development to connect to Briancrest Road. The proposed O'Leary Drive - Briancrest Road intersection (Photo 9 and Photo 10) will be located approximately 75 m north of Vickilynn Lane. Sight distance on both approaches appears adequate.

Photo 8: Looking west on O'Leary Drive from the proposed site access connection.

Photo 9: Looking north (to the right) on Rivendale Drive from the proposed site access Intersection

Photo 10: Looking north (to the left) on Capilano Drive from the proposed site access Intersection.

Traffic Volume Data
HRM Traffic \& Right-of-Way Services (TROW) obtained a machine traffic count on Windgate Drive between Beaver Bank Road and Rivendale Drive (just west of the proposed development) during October 2013. Counts indicate Windgate Drive two-way AM and PM peak hour volumes of about 220 and 256 vehicles per hour, respectively. The graphical representation of average weekday hourly volumes during a 24 hour day (Figure 2) illustrates the pronounced 'peaks' of AM and PM peak hour volumes typical of a road with commuter traffic.

Figure 2: Average Weekday Hourly Volumes - October 2013: Windgate Drive (Beaver Bank Road to Rivendale Drive)

Annual Volume Trends

Manual Traffic Count

Redistribution of Background Volumes

Projected 2015 and 2025 Background Volumes

Historical volume data obtained by HRM between 2011 and 2013 on Windgate Drive (just west of the proposed development) do not indicate a consistent growth trend in volumes. Volumes are in the range of 3,600 vehicles per day. An annual growth rate of 1.0% typical of growth in the Halifax region has been used for the projecting future year traffic volumes for this study.

Manual traffic counts were obtained during AM and PM peak periods between Wednesday, March 4 and Friday, March 6, 2015 at Windgate Drive intersections at Rivendale Drive and Windsor Junction Road. A count completed by HRM on Friday, August 10, 2012 at the Windgate Drive - Beaver Bank Road intersection was also obtained from HRM TROW. Turning movement counts are tabulated in Tables A-1 to A-3, Appendix A, with peak hour volumes indicated by shaded areas.

The proposed street connections across the development will provide alternate routing options for existing residents of the area. In some cases, the new east-west connections will shorten the distance required to make certain trips. Overall, it is expected that the potential impact on existing streets and intersections will be minimal, as volumes are relatively low and will likely balance out. Background projections for this Study have incorporated redistribution of volumes based on the presence of the proposed street connections.

Projected 2025 weekday AM and PM peak hour background volumes, calculated using an annual traffic volume growth rate of 1.0%, are illustrated diagrammatically in Figure A-1 (Boxes A and B), Appendix A.

3.0 Trip Generation, Distribution, and Assignment

Description of
Proposed
Development

The proposed residential development will include a mix of residential and commercial land uses. The south end of the parcel - located adjacent to Windgate Drive - includes commercial developments, a mix of multi-unit and single family residential units, and a sports field / community park. The north end of the parcel, which will be accessed via existing residential streets, will comprise single family residential units only. Proposed land uses are summarized in Table 3-1.

Table 3-1: Summary of Proposed Developments

Development Area	Access	Proposed Land Uses
$\mathbf{1}$	Windgate Drive	Residential: $-\quad 46$ Detached Single Family Units Rivendale Drive Capilano Drive
$-\quad 60,000$ SF Specialty Retail		

The proposed commercial parcel includes approximately 11.5 acres of developable land. The Beaver Bank, Hammonds Plains and Upper Sackville LUB for a C-4 (Highway Commercial Zone) includes the following general limitations for development:

- Minimum lot area - 30,000 SF
- Minimum lot frontage - 100 feet
- Maximum gross floor area on a lot $-10,000$ SF

Considering the size and configuration of the commercial parcel, it is estimated that the site will support approximately six lots which will allow construction of up to 60,000 square feet of commercial buildings. Since expected land uses are not known at this time, trip generation estimates have been prepared for a Specialty Retail land use.

Estimation of Total Site Generated Trips

The number of trips that will be generated by the proposed development has been estimated using rates published in Trip Generation, 9th Edition (Washington, 2012). Trip generation estimates, which are summarized in Table 3-2, indicate that the proposed development is expected to generate approximately 251 two-way vehicle trips (85 vph entering and 166 vph exiting) during the AM peak hour and 381 two-way vehicle trips (211 vph entering and 170 vph exiting) during the PM peak hour.

Table 3-2 - Trip Generation Estimates for Proposed Development

Land Use	Units ${ }^{2}$	Trip Generation Rates ${ }^{1}$				Trips Generated			
		AM Peak		PM Peak		AM Peak		PM Peak	
		In	Out	In	Out	In	Out	In	Out

Trip Generation Estimates for Area 1 (Southern Portion)

Single Family Residential ITE Land Use Code 210) 3	90	0.19	0.56	0.63	0.37	17	50	57	33
Apartment (ITE Land Use Code 222)	120	0.10	0.41	0.40	0.22	12	49	48	26
Specialty Retail (ITE Land Use Code 826)	60	0.76	0.60	1.19	1.52	46	36	71	91
Trip Generation Estimates for Area 1							75	135	176

Trip Generation Estimates for Area 2 (Northern Portion)

Single Family Residential (ITE Land Use Code 210) ${ }^{3}$	55	0.19	0.56	0.63	0.37	10	31	35	20	
Total Trip Generation Estimates for Proposed Development\|							85	166	211	170

Notes: 1. Trip generation rates are 'vehicles per hour per unit' for Single Family Residential (Land Use Code 210), published in Trip Generation, 9th Edition, Institute of Transportation Engineers, 2012.
2. Residential units are dw ellings. KGLA is 'Gross Leasable Area $\times 1000$ square feet'.
3. The Single Family Residential (Land Use Code 210) has been used to estimate trip generation for tow nhouse units.
4. The Speciality Retail (Land Use 826) rate for 'Peak Hour of Adjacent Street Traffic, One Hour Betw een 4 and 6 PM' has been used. Since there is no published rate for the AM peak hour of adjacent street for this Land Use, and since AM peak hour trips to Speciality Retail are generally low, AM trip rates have been assumed to be 50% of the PM rate with reversal of the directional split.

Trip Distribution and Assignment

Projected 2025 Volumes that Include Site Generated Trips

Based on review of the local street network and development surrounding the site as well as local knowledge of the area, external trips generated by the proposed development have been distributed as summarized in Table 3-3. Assigned site generated trips at Study Area intersections are shown diagrammatically in Figure A-2 (Boxes A and B), Appendix A.

Table 3-3: Trip Distribution Summary

Development Area	Direction	
}{}	East - Windgate Drive	45%
(South)	East - Taylor Drive	10%
	West - Windgate Drive	45%
	East - Windgate Drive	35%
	East - Taylor Drive	20%
	West - Windgate Drive	10%
	West - O'Leary Drive	35%

Site generated trips have been added to the projected 2025 background volumes (Figure A-1, Boxes A and B) to provide projected 2025 volumes that include site generated trips which are illustrated diagrammatically in Figure A-3 (Boxes A and B), Appendix A.

4.0 I ntersection Performance Analysis

4.1 Tr affic Signal Warrant Analysis

Traffic Signal Warrant Principles

Traffic Signal Warrant Analysis

A signal warrant analysis is completed to determine if the installation of traffic signals at an intersection will provide a positive impact on total intersection operation. That is, the benefits in time saved and improved safety that will accrue to vehicles entering from a side street will exceed the impact that signals will have in time lost and potential additional collisions for vehicles approaching the intersection on the main street.

The Canadian Traffic Signal Warrant Matrix Analysis (Transportation Association of Canada (TAC), 2005) considers 100 warrant points as an indication that traffic signals will provide a positive impact. Signal warrant analysis uses vehicular and pedestrian volumes, and intersection, roadway and study area characteristics to calculate a warrant point value.

Signal warrant analyses were completed for Windgate Drive intersections at Beaver Bank Road and Windsor Junction Road for projected 2025 background traffic with the addition of trips generated by the proposed development. Results, which are summarized in Table 4-1, indicate that traffic signals are not expected to be warranted at either intersection both without and with site development.

Table 4-1: TAC Traffic Signal Warrant Points by Development Scenario

Development Scenario	Intersection	
	Windgate Drive @ Beaver Bank Road	Windgate Drive @ Windsor Junction Road
2025 Background without Site Development	63 Points (Signals not warranted) [Table A-4]	(Signals not warranted)
2025 Background with Site Development	88 Points (Signals not warranted) [Table A-5]	21 Points (Signals not warranted)
[Table A-6]		

4.2 Tu rn Lane Warrant Analysis

Left Turn Lane Warrant Analysis

Left turn movements on a two lane street may cause both operational and safety problems. Operational problems result as a vehicle stopped waiting for an opportunity to turn across 'heavy' opposing traffic causes a queue of stopped vehicles to form. Safety problems result from rear end collisions when a stopped left turning vehicle is struck by an advancing vehicle, or from head-on or right angle collisions when a left turning vehicle is struck by an opposing vehicle.

The Geometric Design Standards for Ontario Highways Manual contains nomographs for left turn lane analysis for two lane streets. The analysis method, which is normally used by WSP Atlantic to
evaluate need for left turn lanes, uses a series of nomographs that consider speed, advancing volumes, left turns as a percentage of advancing volumes, and opposing volumes. A point, based on 'opposing' and 'advancing' volumes, plotted to the right of the 'warrant line' of the appropriate '\% left turns' and 'approach speed' nomograph, indicates that a left turn lane is warranted for the conditions used in the analysis. Similarly, a point that is plotted to the left of the warrant line indicates that a left turn lane is not warranted.

Analysis of left turn lane warrants was completed (Figure A-4, Appendix A) for eastbound left turns from Windgate Drive into the new site access intersection for projected 2025 volumes with the addition of site generated trips. The analysis indicated that left turn lanes are not expected to be warranted based on weekday AM and PM peak hour traffic volumes.

4.3 Int ersection Level of Service Analysis

Intersection Level of Service Analysis

Level of Service (LOS) Criteria

The level or quality of performance of an intersection in terms of traffic movement is determined by a level of service (LOS) analysis. LOS for intersections is defined in terms of delay, which is a measure of driver discomfort and frustration, fuel consumption, and increased travel time.

LOS criteria (Table 4-2) are stated in terms of average control delay per vehicle which includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

Table 4-2 - Level of Service (LOS) Criteria for Intersections

LOS	LOS Description	Two Way Stop Controlled (TWSC) Intersections Control Delay (Seconds per Vehicle)
A	Very low delay, most vehicles do not stop (Excellent)	Less than 10.0
B	Higher delay; most vehicles stop (Very Good)	Between 10.0 and 15.0
C	Higher level of congestion; number of vehicles stopping is significant, although many still pass through intersection without stopping (Good)	Between 15.0 and 25.0
D	Congestion becomes noticeable; vehicles must sometimes wait through more than one red light; many vehicles stop (Satisfactory)	Between 25.0 and 35.0
E	Vehicles must often wait through more than one red light; considered by many agencies to be the limit of acceptable delay	Between 35.0 and 50.0
F	This level is considered to be unacceptable to most drivers; occurs when arrival flow rates exceed the capacity of the intersection (Unacceptable)	Greater than 50.0

Intersection Level of

 Service AnalysisSummary Level of Service Analysis

Synchro 8.0 software has been used for performance evaluation of Study Area intersections on Beaver Bank Road for 2025 AM and PM peak hour volumes without and with site development.

Level of service (LOS) analysis results are included in Appendix B and are summarized in Tables 4-3 to 4-5.

Windgate Drive @ Beaver Bank Ro ad (Table 4-3) - With the exception of the Windgate Drive westbound approach, overall intersection performance is good. Results indicate that the Windgate Drive approach will experience excessive average delay, V/C ratio, and queue lengths - particularly the PM peak hour - both without and with the addition of site generated trips. It is noted that analysis of unsignalized intersections using Synchro software does have limitations that result in it reporting unreasonably poor levels of performance as a movement approaches capacity. For this reason, it is expected that the results indicated for the PM peak hour (both without and with development) are not representative of actual conditions.

Windgate Drive @ Wind sor Junct ion Road (Table 4-4) Intersection performance is expected to be satisfactory both without and with the addition of site generated trips. All movements operate within HRM acceptable limits.

Windgate Drive @ Proposed Site Access (Table 4-5) - Intersection performance is expected to be satisfactory; all movements operate within HRM acceptable limits.

Table 4-3-LOS for Beaver Bank Road @ Windgate Drive

LOS Criteria	Control Delay (sec/veh), LOS, v/c Ratio, and 95th\% Queue (m) by Intersection Movement				Overall Intersection	
	WB-LR	NB-TR	SB-L	SB-T	Delay	LOS
Weekday AM Peak Hour - Projected 2025 Volumes without Site Development (Page B-1)						
Delay v/c Queue	$\begin{aligned} & 39.2 \\ & 0.52 \\ & 20.2 \end{aligned}$	$\begin{gathered} 0.0 \\ 0.18 \\ 0 \end{gathered}$	$\begin{gathered} 8.0 \\ 0.04 \\ 0.9 \end{gathered}$	$\begin{gathered} 0.0 \\ 0.49 \\ 0 \end{gathered}$	3.6	A

Weekday AM Peak Hour - Projected 2025 Volumes with Site Development (Page B-5)

Delay	77.8	0.0	8.1	0.0		10.7
v/c	0.87	0.2	0.05	0.49	B	
Queue	51.7	0	1.2	0		

Weekday PM Peak Hour - Projected 2025 Volumes without Site Development (Page B-3)

Delay	288.8	0.0	11.6	0.0		
v/c	1.41	0.71	0.06	0.28	26.8	D
Queue	89.7	0.0	1.4	0.0		

Weekday PM Peak Hour - Projected 2025 Volumes with Site Development (Page B-8)

Delay	747.2	0.0	12.5	0.0		
v/c	2.45	0.76	0.11	0.28		
Queue	175.9	0	2.8	0		

Table 4-4 - LOS for Windsor Junction Road @ Windgate Drive

Table 4-5 - LOS for Windgate Drive @ Proposed Site Access Street

LOS Criteria	Control Delay (sec/veh), LOS, v/c Ratio, and 95th\% Queue (m) by Intersection Movement			Overall Intersection	
	EB-LT	WB-TR	SB-LR	Delay	LOS
Weekday AM Peak Hour - Projected 2025 Volumes with Site Development (Page B-7)					
Delay v/c Queue	$\begin{gathered} \hline \hline 1.1 \\ 0.02 \\ 0.5 \end{gathered}$	$\begin{gathered} \hline \hline 0.0 \\ 0.07 \\ 0.0 \end{gathered}$	$\begin{gathered} \hline \hline 10.4 \\ 0.13 \\ 3.5 \end{gathered}$	3.0	A

Weekday PM Peak Hour - Projected 2025 Volumes with Site Development (Page B-10)

Delay	2.8	0	12.2		
v/c	0.06	0.15	0.18	3	A
Queue	1.3	0	12.2		

5.0 Summary, Recommendations, and Conclusions

Description of the Proposed Development

Proposed Site Access

Description of Study Area Roads

1. Plans are being prepared by Marque Investments Ltd. for the development of "Windgate Village", a mixed use residential / commercial subdivision in Beaver Bank, NS. The proposed development will include a mix of residential and commercial land uses. The south end of the parcel - located adjacent to Windgate Drive - includes commercial developments and a mix of multi-unit, townhouse, and detached single family residential units. The north end of the parcel, which will be accessed via existing residential streets, will comprise detached single family residential units only. It is anticipated that buildout of the development will be completed by 2025.
2. Separate site accesses will be provided to the north and south ends of the proposed development. The south end of the site will be accessed via new street connections to Windgate Drive, Rivendale Drive, and Capilano Drive. The north end of the site will be accessed via connections to O'Leary Drive and Briancrest Road.
3. Windgate Dri ve is a 2-lane collector road that runs east-west approximately 4.7 km between Beaver Bank Road and Windsor Junction Road. In the vicinity of the Study Area, it has gravel shoulders and open ditches; the posted speed limit is $70 \mathrm{~km} / \mathrm{h}$.

Beaver Bank Road is a 2-lane collector road that runs north-south approximately 21 km between Lower Sackville and East Uniacke Road.

Windsor Junction Road is a 2-lane collector road that runs northsouth approximately 3.5 km between Cobequid Road and Fall River Road.

Rivendale Dr ive and O'Leary Dri ve are 2-lane paved local residential streets located west of the proposed development. Rivendale Drive provides access from the south end of the site to Windgate Drive, and O'Leary Drive will provide access (via other local streets) between the north end of the development and Beaver Bank Road. Capilano Drive, Bria ncrest Road, Terry Road, and Taylor Drive are 2-lane paved local residential streets located east of the proposed development. Capilano Drive, Briancrest Road, and Terry Road will connect the development south to Windgate Drive, while Taylor Drive provides a connection northeast toward Fall River.
4. Projected 2025 weekday AM and PM peak hour background
volumes were calculated using an annual traffic volume growth rate of 1.0%.

Background Traffic Volumes

Estimation of Site Generated Trips for the Proposed Development

Trip Distribution and Assignment

Signal Warrant Analysis

Left Turn Lane Warrant

Summary - Level of
Service Analysis

Conclusions

5. The proposed development is expected to generate approximately 251 two-way vehicle trips (85 vph entering and 166 vph exiting) during the AM peak hour and 381 two-way vehicle trips (211 vph entering and 170 vph exiting) during the PM peak hour.
6. External trips generated by the development have been assigned to study area streets and intersections based on review of the local street network and development surrounding the site as well as local knowledge of the area.
7. Signal warrant analyses were completed for Windgate Drive intersections at Beaver Bank Road and Windsor Junction Road for projected 2025 background traffic with the addition of trips generated by the proposed development. Traffic signals are not expected to be warranted at the Beaver Bank Road (88 warrant points) or the Windsor Junction Road (21 warrant points) intersections.
8. Analysis of left turn lane warrants was completed for eastbound left turns from Windgate Drive into the proposed site access street for projected 2025 volumes with the addition of site generated trips. The analysis indicated that left turn lanes are not expected to be warranted for all scenarios.
9. Intersection performance analysis was completed for Windgate Drive intersections at Beaver Bank Road, Windsor Junction Road, and the proposed site access street. Results indicate that intersection performance at the Windgate Drive - Windsor Junction Road and Windgate Drive - proposed site access street intersections are expected to be satisfactory based on 2025 AM and PM peak hour volumes both without and with site development. At the Beaver Bank Road - Windgate Drive intersection, results indicate that the Windgate Drive (westbound) approach will experience excessive average delay, V/C ratio, and queue lengths -- particularly the PM peak hour - both without and with the addition of site generated trips.
10. Further investigation should be completed to determine a final location for the proposed site access road to Windgate Drive, and to determine whether modifications to the existing road profile are necessary to improve sight distance.
11. Consideration should be given to the installation of traffic signals at the Beaver Bank Road - Windgate Drive intersection to accommodate existing traffic demand as well as projected traffic demand (both without and with site development). Though traffic signal warrants were not met, installation of signals will improve unacceptably high delays currently experienced on the Windgate Drive approach during AM and PM peak periods.
12. Site generated trips are not expected to have a significant impact to traffic performance in the Study Area.

Appendix A

Intersection Turning Movement Counts
\section*{Traffic Volume Diagrams}
Traffic Signal Warrants

	March 5	Table ndgat	Road 6 (PM), 2015		\qquad \qquad ate Drive		
AM Peak Period Volume Data								
Time		Windsor Junction Road Northbound Approach		Windsor Junction Road Southbound Approach		Windgate Drive Eastbound Approach		Total Vehicles
		A	B	H	I	J	L	
07:00	07:15	4	18	16	2	17	26	83
07:15	07:30	8	8	11	8	21	31	87
07:30	07:45	4	8	23	17	30	43	125
07:45	08:00	9	15	20	11	28	44	127
08:00	08:15	12	16	15	17	30	28	118
08:15	08:30	7	9	17	4	17	23	77
08:30	08:45	6	10	14	7	17	17	71
08:45	09:00	9	14	19	11	32	18	103
AM P	Hour	33	47	69	53	109	146	457
PM Peak Period Volume Data								
Time		Windsor Junction Road Northbound Approach		Windsor Junction Road Southbound Approach		Windgate Drive Eastbound Approach		Total Vehicles
		A	B	H	I	J	L	
15:30	15:45	9	14	20	8	8	10	69
15:45	16:00	15	14	17	15	16	11	88
16:00	16:15	10	16	14	21	21	15	97
16:15	16:30	22	19	12	19	15	18	105
16:30	16:45	29	19	14	22	18	8	110
16:45	17:00	27	29	17	21	15	12	121
17:00	17:15	21	24	14	19	17	15	110
17:15	17:30	35	25	17	17	22	7	123
PM Peak Hour		112	97	62	79	72	42	464

		Table er Ba @ dgate ver Ba ay, Augus					Windga \uparrow	
AM Peak Period Volume Data								
Time		Beaver Bank Road Northbound Approach		Windgate Drive Westbound Approach		Beaver Bank Road Southbound Approach		Total Vehicles
		B	C	D	F	G	H	
07:00	07:15	38	20	22	3	10	175	268
07:15	07:30	45	22	18	2	13	175	275
07:30	07:45	34	22	20	1	6	162	245
07:45	08:00	53	24	26	2	11	180	296
08:00	08:15	59	18	12	4	8	148	249
08:15	08:30	67	15	16	6	5	134	243
08:30	08:45	70	16	13	6	10	137	252
08:45	09:00	68	22	19	12	7	139	267
AM P	Hour	170	88	86	8	40	692	1084
Noon Peak Period Volume Data								
Time		Beaver Bank Road Northbound Approach		Windgate Drive Westbound Approach		Beaver Bank Road Southbound Approach		Total Vehicles
		B	C	D	F	G	H	
11:00	11:15	80	12	14	5	5	71	187
11:15	11:30	83	14	19	2	5	71	194
11:30	11:45	82	21	19	1	5	83	211
11:45	12:00	81	21	19	7	3	80	211
12:00	12:15	84	16	16	4	5	94	219
12:15	12:30	83	27	23	4	5	93	235
12:30	12:45	78	31	16	10	5	87	227
12:45	13:00	75	20	15	3	5	93	211
Noon	k Hour	326	68	71	15	18	305	803
PM Peak Period Volume Data								
Time		Beaver Bank Road Northbound Approach		Windgate Drive Westbound Approach		Beaver Bank Road Southbound Approach		Total Vehicles
		B	C	D	F	G	H	
15:30	15:45	163	39	27	6	14	99	348
15:45	16:00	180	37	32	7	7	88	351
16:00	16:15	199	37	25	14	8	90	373
16:15	16:30	233	26	20	12	10	77	378
16:30	16:45	264	46	32	19	7	122	490
16:45	17:00	218	36	24	19	5	109	411
17:00	17:15	181	31	29	14	6	116	377
17:15	17:30	156	25	26	11	6	119	343
PM Peak Hour		896	139	105	64	28	424	1656

[^0]

2005 Canadian Traffic Signal Warrant Matrix Analysis

Table A－4：Beaver Bank Road＠Windgate Drive
Projected 2025 Background Traffic Volumes without Site Development

Main Street（name） Side Street（name）	Beaver Bank Road			Direction（EW or NS）			NS	Date： City：		March 2015
	Windgate Drive			Direction（EW or NS）			EW			Halifax NS
Lane Configuration		Ј 牙 x	ち \％ F		$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \approx \\ & \stackrel{\rightharpoonup}{F} \\ & \hline \end{aligned}$	$\frac{\stackrel{\rightharpoonup}{v}}{\frac{x}{4}}$		䯭		
Beaver Bank Road	NB				1			1		
Beaver Bank Road	SB		1				1，000	1		
Windgate Drive	WB			1						
	EB									

Other input		Speed $(\mathrm{Km} / \mathrm{h})$	Trucks $\%$	Bus Rt $(\mathrm{y} / \mathrm{n})$	Median (m)
Beaver Bank Road	NS	50	2.0%	n	0.0
Windgate Drive	EW	50	2.0%	n	

			Ped1	Ped2	Ped3	Ped4
			NS	NS	EW	EW
			W Side	E Side	N Side	S side
7：00	：00	－8	0	0	0	0
8：00	：00	－9	0	0	0	0
11：30	2：30	－1	0	0	0	0
12：30	3：30	－1	0	0	0	0
15：30	6：30	－1	0	0	0	0
16：30	7：30	－1	0	0	0	0
Total 6－hour（ak）			0	0	0	0
Average 6－hour（eak）			0	0	0	0

Demographics		
Elementary School	$(\mathrm{y} / \mathrm{n})$	y
Senior＇s Complex	$(\mathrm{y} / \mathrm{n})$	n
Pathway o chool t S	$\mathrm{y} / \mathrm{n})$	$(\mathrm{n}$
Metro rea opuAtioorP	$\mathrm{\#})$	$(300,000$
Central usiness Bistrict D	$(\mathrm{y} / \mathrm{n})$	n

Traffic Input	NB			SB			WB			EB		
	LT	Th	RT									
7：00－8：00	0	185	100	45	760	0	95	0	5	0	0	0
8：00－9：00	0	140	75	35	570	0	70	0	5	0	0	0
11：30－12：30	0	360	75	20	335	0	80	0	15	0	0	0
12：30－13：30	0	350	105	20	405	0	75	0	25	0	0	0
15：30－16：30	0	985	130	30	435	0	105	0	55	0	0	0
16：30－17：30	0	835	110	25	370	0	90	0	45	0	0	0
Total（6－hour peak）	0	2，855	595	175	2，875	0	515	0	150	0	0	0
Average（6－hour peak）	0	476	99	29	479	0	86	0	25	0	0	0

$$
\begin{array}{r}
\mathrm{W}=\left[\mathrm{C}_{\mathrm{bt}}\left(\mathrm{X}_{\mathrm{v}-\mathrm{v}}\right) / \mathrm{K}_{1}+\left(\mathrm{F}\left(\mathbf{X}_{\mathrm{v}-\mathrm{p}}\right) \mathrm{L}\right) / \mathrm{K}_{2}\right] \times \mathrm{C}_{\mathrm{i}} \\
\hline \mathbf{W} \quad 63 \\
\text { NOT Warranted }
\end{array} \text { Veh } \begin{aligned}
& 0 \\
& \text { Ped }
\end{aligned}
$$

2005 Canadian Traffic Signal Warrant Matrix Analysis

Table A-5: Beaver Bank Road @ Windgate Drive
Projected 2025 Background Traffic Volumes with Site Development

2005 Canadian Traffic Signal Warrant Matrix Analysis

Table A-6: Windsor Junction Road @ Windgate Drive
Projected 2025 Background Traffic Volumes with Site Development

Main Street (name)	Windsor Junction Road			Direction (EW or NS)			NS	Date: City:		March 2015
Side Street (name)	Windgate Drive			Direction (EW or NS)			EW			Halifax NS
Lane Configuration		$\stackrel{5}{5}$ x	ち ※ F		® \% (F	¢ ¢ x				
Windsor Junction Road	NB		1					1		
Windsor Junction Road	SB				1		1,000	1		
Windgate Drive	WB									
	EB			1						

Other input		Speed $(\mathrm{Km} / \mathrm{h})$	Trucks $\%$	Bus Rt $(\mathrm{y} / \mathrm{n})$	Median (m)
Windsor Junction Road	NS	50	2.0%	n	0.0
Windgate Drive	EW	50	2.0%	n	

			Ped1	Ped2	Ped3	Ped4
			NS	NS	EW	EW
			W Side	E Side	N Side	S side
7:00	:00	-8	0	0	0	0
8:00	:00	-9	0	0	0	0
11:30	2:30	-1	0	0	0	0
12:30	3:30	-1	0	0	0	0
15:30	6:30	-1	0	0	0	0
16:30	7:30	-1	0	0	0	0
Total 6-hour (eak)			0	0	0	0
Average 6-hour (eak)			0	0	0	0

Demographics		
Elementary School	$(\mathrm{y} / \mathrm{n})$	y
Senior's Complex	$(\mathrm{y} / \mathrm{n})$	n
Pathway o chool t S	$\mathrm{y} / \mathrm{n})$	$(\mathrm{n}$
Metro rea oputatiorP	$\mathrm{\#})$	$(300,000$
Central usiness Bistrict D	$(\mathrm{y} / \mathrm{n})$	n

Traffic Input	NB			SB			WB			$\overline{\mathbf{E B}}$		
	LT	Th	RT									
7:00-8:00	45	55	0	0	80	85	0	0	0	170	0	185
8:00-9:00	35	40	0	0	60	65	0	0	0	130	0	140
11:30-12:30	50	40	0	0	40	60	0	0	0	75	0	65
12:30-13:30	50	40	0	0	40	60	0	0	0	75	0	65
15:30-16:30	150	110	0	0	70	150	0	0	0	130	0	65
16:30-17:30	130	95	0	0	60	130	0	0	0	110	0	55
Total (6-hour peak)	460	380	0	0	350	550	0	0	0	690	0	575
Average (6-hour peak)	77	63	0	0	58	92	0	0	0	115	0	96

$$
\begin{aligned}
\mathrm{W} & =\left[\mathrm{C}_{\mathrm{bt}}\left(\mathrm{X}_{\mathrm{v}-\mathrm{v}}\right) / \mathrm{K}_{1}+\left(\mathrm{F}\left(\mathrm{X}_{\mathrm{v}-\mathrm{p}}\right) \mathrm{L}\right) / \mathrm{K}_{2}\right] \times \mathrm{C}_{\mathrm{i}} \\
& \begin{array}{lcc}
\mathrm{W}= & 21 & 0 \\
\text { NOT Warranted } & \text { Veh } & \text { Ped }
\end{array}
\end{aligned}
$$

Appendix B

Intersection Performance Analysis

Movement	WBL	+ WBR	4 NBT	NBR		$\stackrel{\downarrow}{\text { ¢ }}$	
Lane Configurations	\%		$\stackrel{ }{ }$		${ }^{7}$	\uparrow	
Volume (veh/h)	95	5	185	100	45	760	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	103	5	201	109	49	826	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	1179	255			310		
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	1179	255			310		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free \%	49	99			96		
cM capacity (veh/h)	202	783			1251		
Direction, Lane \#	WB 1	NB 1	SB 1	SB 2			
Volume Total	109	310	49	826			
Volume Left	103	0	49	0			
Volume Right	5	109	0	0			
cSH	210	1700	1251	1700			
Volume to Capacity	0.52	0.18	0.04	0.49			
Queue Length 95th (m)	20.2	0.0	0.9	0.0			
Control Delay (s)	39.2	0.0	8.0	0.0			
Lane LOS	E		A				
Approach Delay (s)	39.2	0.0	0.4				
Approach LOS	E						
Intersection Summary							
Average Delay			3.6				
Intersection Capacity Utiliz			52.2\%		Level	Service	A
Analysis Period (min)			15				

Movement	EBL	EBR	NBL	¢ ${ }_{\text {NBT }}$	¢ SBT	\% SBR	
Lane Configurations	*			\uparrow	$\hat{\beta}$		
Volume (veh/h)	125	165	35	55	80	60	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	136	179	38	60	87	65	
Pedestrians							
Lane Width (m)							
Walking Speed (m / s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m) pX, platoon unblocked							
vC , conflicting volume	255	120	152				
$\mathrm{vC1}$, stage 1 conf vol							
vC 2 , stage 2 conf vol							
vCu , unblocked vol	255	120	152				
tC , single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free \%	81	81	97				
cM capacity (veh/h)	714	932	1429				
Direction, Lane \#	EB 1	NB 1	SB 1				
Volume Total	315	98	152				
Volume Left	136	38	0				
Volume Right	179	0	65				
cSH	823	1429	1700				
Volume to Capacity	0.38	0.03	0.09				
Queue Length 95th (m)	13.7	0.6	0.0				
Control Delay (s)	12.1	3.1	0.0				
Lane LOS	B	A					
Approach Delay (s)	12.1	3.1	0.0				
Approach LOS	B						
Intersection Summary							
Average Delay			7.3				
Intersection Capacity Util			39.8\%		Level	Service	A
Analysis Period (min)			15				

Movement	WBL		NBT	$\begin{gathered} > \\ \text { NBR } \end{gathered}$		¢ SBT	
Lane Configurations	M		F		${ }^{7}$	4	
Volume (veh/h)	105	55	985	130	30	435	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	114	60	1071	141	33	473	
Pedestrians							
Lane Width (m)							
Walking Speed (m / s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m) pX, platoon unblocked							
vC , conflicting volume	1679	1141			1212		
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu, unblocked vol	1679	1141			1212		
tC, single (s)	6.4	6.2			4.1		
$\mathrm{tC}, 2$ stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free \%	0	76			94		
cM capacity (veh/h)	98	244			576		
Direction, Lane \#	WB 1	NB 1	SB 1	SB 2			
Volume Total	174	1212	33	473			
Volume Left	114	0	33	0			
Volume Right	60	141	0	0			
cSH	124	1700	576	1700			
Volume to Capacity	1.41	0.71	0.06	0.28			
Queue Length 95th (m)	89.7	0.0	1.4	0.0			
Control Delay (s)	288.8	0.0	11.6	0.0			
Lane LOS	F		B				
Approach Delay (s)	288.8	0.0	0.8				
Approach LOS	F						
Intersection Summary							
Average Delay			26.8				
Intersection Capacity Util			75.6\%		Level	Service	D
Analysis Period (min)			15				

Movement	EBL	EBR	NBL	¢ ${ }_{\text {NBT }}$	$\frac{1}{\text { ¢ }}$	4 SBR	
Lane Configurations	*			\uparrow	$\hat{\beta}$		
Volume (veh/h)	80	45	125	110	70	90	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	87	49	136	120	76	98	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m) pX, platoon unblocked							
vC , conflicting volume	516	125	174				
$\mathrm{vC1}$, stage 1 conf vol							
vC 2 , stage 2 conf vol							
vCu , unblocked vol	516	125	174				
tC , single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free \%	81	95	90				
cM capacity (veh/h)	469	926	1403				
Direction, Lane \#	EB 1	NB 1	SB 1				
Volume Total	136	255	174				
Volume Left	87	136	0				
Volume Right	49	0	98				
cSH	570	1403	1700				
Volume to Capacity	0.24	0.10	0.10				
Queue Length 95th (m)	7.0	2.4	0.0				
Control Delay (s)	13.3	4.6	0.0				
Lane LOS	B	A					
Approach Delay (s)	13.3	4.6	0.0				
Approach LOS	B						
Intersection Summary							
Average Delay			5.3				
Intersection Capacity Util			39.1\%		Level	Service	A
Analysis Period (min)			15				

2: Windsor Junction Road \& Windgate Drive

Movement	EBL	EBR	NBL	4 NBT	- SBT	+ SBR	
Lane Configurations	*			\uparrow	\uparrow		
Volume (veh/h)	172	184	46	55	80	87	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	187	200	50	60	87	95	
Pedestrians							
Lane Width (m)							
Walking Speed (m / s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC , conflicting volume	294	134	182				
$\mathrm{vC1}$, stage 1 conf vol							
vC 2 , stage 2 conf vol							
vCu , unblocked vol	294	134	182				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free \%	72	78	96				
cM capacity (veh/h)	672	915	1394				
Direction, Lane \#	EB 1	NB 1	SB 1				
Volume Total	387	110	182				
Volume Left	187	50	0				
Volume Right	200	0	95				
cSH	779	1394	1700				
Volume to Capacity	0.50	0.04	0.11				
Queue Length 95th (m)	21.3	0.8	0.0				
Control Delay (s)	14.1	3.7	0.0				
Lane LOS	B	A					
Approach Delay (s)	14.1	3.7	0.0				
Approach LOS	B						
Intersection Summary							
Average Delay			8.6				
Intersection Capacity Util			45.8\%	IC	Level	Service	A
Analysis Period (min)			15				

Movement	+ EBL	$\begin{gathered} \rightarrow \\ \text { EBT } \end{gathered}$	- WBT	4 WBR	SBL	/ SBR	
Lane Configurations		\uparrow	\uparrow		*		
Volume (veh/h)	27	180	78	25	44	52	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	29	196	85	27	48	57	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC , conflicting volume	112				353	98	
$\mathrm{vC1}$, stage 1 conf vol							
vC 2 , stage 2 conf vol							
vCu , unblocked vol	112				353	98	
tC , single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free \%	98				92	94	
cM capacity (veh/h)	1478				632	958	
Direction, Lane \#	EB 1	WB 1	SB 1				
Volume Total	225	112	104				
Volume Left	29	0	48				
Volume Right	0	27	57				
cSH	1478	1700	775				
Volume to Capacity	0.02	0.07	0.13				
Queue Length 95th (m)	0.5	0.0	3.5				
Control Delay (s)	1.1	0.0	10.4				
Lane LOS	A		B				
Approach Delay (s)	1.1	0.0	10.4				
Approach LOS			B				
Intersection Summary							
Average Delay			3.0				
Intersection Capacity Uti			29.9\%	IC	Level	Service	A
Analysis Period (min)			15				

Movement	WBL	WBR	4 NBT	P NBR	+ SBL	¢ SBT	
Lane Configurations	*		\uparrow		${ }^{1}$	4	
Volume (veh/h)	157	79	985	197	54	435	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	171	86	1071	214	59	473	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC , conflicting volume	1768	1178			1285		
$\mathrm{vC1}$, stage 1 conf vol							
vC 2 , stage 2 conf vol							
vCu , unblocked vol	1768	1178			1285		
tC, single (s)	6.4	6.2			4.1		
$\mathrm{tC}, 2$ stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free \%	0	63			89		
cM capacity (veh/h)	82	232			540		
Direction, Lane \#	WB 1	NB 1	SB 1	SB 2			
Volume Total	257	1285	59	473			
Volume Left	171	0	59	0			
Volume Right	86	214	0	0			
cSH	105	1700	540	1700			
Volume to Capacity	2.45	0.76	0.11	0.28			
Queue Length 95th (m)	175.9	0.0	2.8	0.0			
Control Delay (s)	747.2	0.0	12.5	0.0			
Lane LOS	F		B				
Approach Delay (s)	747.2	0.0	1.4				
Approach LOS	F						
Intersection Summary							
Average Delay			92.8				
Intersection Capacity Utili			84.0\%		Level	Service	E
Analysis Period (min)			15				

Movement	EBL	EBR	NBL	NBT	¢ SBT	+	
Lane Configurations	*			\uparrow	\uparrow		
Volume (veh/h)	132	67	151	110	70	151	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	143	73	164	120	76	164	
Pedestrians							
Lane Width (m)							
Walking Speed (m / s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m) pX, platoon unblocked							
vC , conflicting volume	606	158	240				
$\mathrm{vC1}$, stage 1 conf vol							
vC 2 , stage 2 conf vol							
vCu , unblocked vol	606	158	240				
tC , single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free \%	64	92	88				
cM capacity (veh/h)	403	887	1326				
Direction, Lane \#	EB 1	NB 1	SB 1				
Volume Total	216	284	240				
Volume Left	143	164	0				
Volume Right	73	0	164				
cSH	494	1326	1700				
Volume to Capacity	0.44	0.12	0.14				
Queue Length 95th (m)	16.7	3.2	0.0				
Control Delay (s)	17.8	5.1	0.0				
Lane LOS	C	A					
Approach Delay (s)	17.8	5.1	0.0				
Approach LOS	C						
Intersection Summary							
Average Delay			7.2				
Intersection Capacity Util			48.5\%		Level	Service	A
Analysis Period (min)			15				

10: Windgate Drive \& Proposed Site Access

Movement	4 EBL	$\begin{gathered} \rightarrow \\ \mathrm{EBT} \end{gathered}$	WBT	WBR	SBL	\% SBR	
Lane Configurations		\uparrow	\uparrow		*		
Volume (veh/h)	67	145	182	58	49	54	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	73	158	198	63	53	59	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC , conflicting volume	261				533	229	
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu, unblocked vol	261				533	229	
tC , single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free \%	94				89	93	
cM capacity (veh/h)	1304				479	810	
Direction, Lane \#	EB 1	WB 1	SB 1				
Volume Total	230	261	112				
Volume Left	73	0	53				
Volume Right	0	63	59				
cSH	1304	1700	610				
Volume to Capacity	0.06	0.15	0.18				
Queue Length 95th (m)	1.3	0.0	5.1				
Control Delay (s)	2.8	0.0	12.2				
Lane LOS	A		B				
Approach Delay (s)	2.8	0.0	12.2				
Approach LOS			B				
Intersection Summary							
Average Delay			3.4				
Intersection Capacity Utilization			40.5\%	ICU Level of Service			A
Analysis Period (min)			15				

[^0]: *Count obtained from HALIFAX Traffic \& ROW Services.

