Transportation Impact Study
Wyse Road, Dartmouth
a report by Fathom Studio

Issued
November 22, 2019

Revision 1:
April 30, 2020

Project
Wyse Road,
Multi-Unit Development

Prepared for
HRM Planning \& Development Eastern Region, Alderney Gate 40 Alderney Drive, 2nd Floor Dartmouth, Nova Scotia B2Y 2N5

Submitted by
Fathom Studio
1 Starr Lane
Dartmouth, Nova Scotia
B2Y 4V7

TABLE OF CONTENTS

1. Introduction 1
2. Existing Conditions 2
2.1 Study Area 2
2.2 Roadways and Intersections 3
2.3 Active Transportation (AT) 5
2.4 Vehicle Traffic 5
2.5 Transit 6
2.6 Truck Routes 6
3. Future Conditions 7
3.1 Context 7
3.1.1 Analysis Time Horizon 7
3.1.2 Background Traffic 7
3.1.3 Analysis Period 8
3.2 The Development 8
3.2.1 Trip Generation 8
3.3 Trip Distribution and Assignment 9
3.3.1 Driveway Location 9
4. Analysis 10
4.1 Transportation Modelling 10
4.2 Development Driveway 10
4.3 Nantucket Ave/Sportsplex/Mall Driveway 11
4.4 Nantucket Ave. / Victoria Rd. / School St 12
4.5 Wyse Rd / Macdonald Bridge / Nantucket 13
4.6 Wyse Road and Thistle Street 15
5. Conclusions 17
APPENDICIES
Appendix A: Traffic Counts
Appendix B: Trip Generation
Appendix C: Trip Assignment
Appendix D: Synchro Output
Appendix E: Alternate Driveway Evaluation

INTRODUCTION

This Transportation Impact Study follows HRM's Guidelines for the Preparation of Transportation Impact Studies, $8^{\text {th }}$ Edition and general traffic and transportation engineering principles for such studies. It is intended to address the transportation impacts that may be expected on the road and active transportation networks resulting from the:

- Removal of the former Scotia Bank building located in the northeast corner of the Wyse Road and Nantucket Avenue; and,
- Addition of a new multi-unit residential / commercial / office development as described in the table below.

Table 1-1:
Project Summary

Proposed Development	Dunphy Wyse Road Development
Owner	Alex Dunphy
Location	Northeast corner of:
	Wyse Road and Nantucket Avenue
Building Details	125 Residential Units
	$9,000 \mathrm{ft}^{2}$ Commercial / Retail Space
	$8,000 \mathrm{ft}^{2}$ Office Space

Figure 1-1:
Building Rendering

2

Existing Conditions

2.1 Study Area

The study area is located in the northeast quadrant of the Wyse Road and Nantucket Avenue intersection, immediately northeast of the Macdonald Bridge in Dartmouth, Nova Scotia. The yellow area represents the new building development site and the blue represents the primary study area considered in this study for analysis purposes.

Figure 2-1: Study Area

2.2 Roadways and Intersections

The following sections provide a brief summary of each of the key roadways in the study area that are relevant to this study.

Victoria
Road

Thistle Street

Macdonald Bridge

Victoria Road is the next major roadway north of the development and services traffic between Downtown Dartmouth at its east end and the Circumferential Highway (Hwy 111) at its west end, including its continuation further to the west as Windmill Road. It's intersection with Nantucket Drive is signalized and is a primary route between the Macdonald Bridge and Woodland Avenue / Highway 118. Near Nantucket, Victoria Road includes a westbound dedicated left and shared through/right lane and an eastbound shared through/left with a dedicated right turn channelization and associated approach flare towards the Macdonald Bridge.

Thistle is a two-lane connector roadway between Wyse Road, through Victoria Road and into residential areas to the north of Victoria. It is a common commuter route using Maple Drive as a connection between Thistle and Ochterloney Street. It services the east entry and exit driveways to the Dartmouth Bridge Transit Terminal and includes an access to the Sportplex parking lot. Traffic signals are present at both Victoria Road and Wyse Road.

The Macdonald Bridge is one of the two bridges crossing the Halifax Harbour. The bridge has three lanes with a center reversing lane and is serviced by 5 approach and departure lanes (10 total) as well as bicycle (west side) and pedestrian (east side) lanes on either side of the Bridge. Toll collection includes MacPass technologies and coin collection on all lanes and one attendant is present in each direction for cash transactions.

2.3 Active Transportation (AT)

The core downtown areas of both Halifax and Dartmouth have documented high cyclist and pedestrian activity (and other travel modes). This study area is no exception with many local AT origins and destinations surrounding the site and the development has direct access to numerous AT and transit corridors. These include the Dartmouth Bridge Transit Terminal, Dartmouth High and Bicentennial Schools, Dartmouth Common, the recently expanded and renovated Zatzman Sportsplex, Downtown Dartmouth, the Dartmouth waterfront, and various commercial and retail businesses. The development also has direct access to the dedicated bicycle and pedestrian walking lanes that cross the Macdonald Bridge connecting Dartmouth and Halifax.

The majority of routes and intersection crossings are already in place for this development and access points for the development naturally connect to existing sidewalk infrastructure along Nantucket Avenue and Wyse Road.

2.4 Vehicle Traffic

Recent and historical traffic counts were provided from HRM for all intersections in the study area. Most counts were completed during 2017 and 2018 and counts were supplemented by transit data, site observations, and general data associated with counts across the Macdonald and MacKay bridges. The baseline counts used in this analysis are provided in Appendix A of this report and the tables in Section 4 of this report show the volumes present on each movement of the intersections under each analysis scenario.

2.5 Transit

The proposed development is located immediately southwest of the Dartmouth Bridge Transit Terminal with less than 200 meters between the development and main transit terminal building. The development therefore has direct access to some of the best transit service available in the region with immediate access to over 20 different routes at the terminal and on connecting roadways. Additional routes are available at the Alderney Gate Terminal include the Alderney Ferry to Halifax which is located about 800 meters to the southeast.

2.6 Truck Routes

Halifax's By-Law T-400 "Respecting the Establishment of Truck Routes for Certain Trucking Motor Vehicles within the HRM" identifies Wyse Road and Windmill Road as Daytime routes (shown in blue) between the hours of 7 AM and 9 PM. Adjoining "Full Time" truck routes (shown in green) include Albro Lake Road and portions of Victoria Road and Windmill Road to the northwest and the Circumferential Highway via Alderney Drive, Prince Albert or Portland Street. These routes provide direct access to the new development, though limited delivery requirements are expected at this site.

3.
 Future Conditions
 3.1 Context

3.1.1 Analysis Time Horizon

Based on recommended HRM guidelines, the base year for this study has been established as 2019 and such studies frequently addresses a 5-year time horizon (2024) which includes background traffic growth, new traffic related to the Wyse Road development and any other significant transportation impacts anticipated during that period. Given the relatively low volume of traffic generated by the development relative to the total traffic on the road network, this study addresses the 2019 base year and the 2024 horizon year with the development in place.

3.1.2 Background Traffic

Background traffic growth rates for traffic impact studies throughout HRM vary though are often in the $0.5-1 \%$ range. Actual growth is frequently less than this in many areas and even negative in some cases. Much of the natural traffic growth throughout the road network has been influence by the regional planning initiatives implemented over the past decade. Some of this work has resulted in more development closer to the downtown cores of Halifax and Dartmouth. Simultaneously, it has promoted increased transit and active transportation use which in turn has helped limit traffic growth rates for personal vehicles.

To determine reasonable growth rates in past studies for the Dartmouth area, HRM was consulted regarding transportation modeling work that was carried out as part of the regional planning analysis, and those consultations recommended that an average annual growth rate of 0.5% was appropriate for this general project area. Typically, the background traffic growth rates account for the addition of development throughout the area that contributing to traffic near the development as well as the general impact of trip reductions related to shifts to transit and active transportation modes.

The other important consideration regarding background traffic growth for the purposes of this study is the impact of the Macdonald Bridge, particularly during the peak hours of traffic. The intersection of Wyse Road with Nantucket and the Macdonald Bridge generally operates at, or near capacity during both the AM and PM peak hours. As intersection utilization nears capacity, traffic growth rates typically reduce in favour of the peak period extending over a longer period of time. Given the various factors and inputs, this study has assumed a 0.5% background traffic growth rate over the 5-year horizon to 2024 and to adjust past studies to the 2019 base year.

3.1.3 Analysis Period

Roadways adjacent to the development are highly commuter oriented, particularly given the proximity of the Macdonald Bridge which is a major commuter corridor to between downtown Dartmouth and Halifax. Therefore, the weekday AM and PM peak hours are considered to be the critical periods for the analysis.

3.2 The Development

The proposed development is composed primarily of residential units, a relatively small segment of office space, and some ground floor commercial / retail space. To determine a reasonable estimate of trips destined to and from the development during the AM and PM peak hours, the Institute of Transportation Engineers (ITE) Trip Generation Guide (10 ${ }^{\text {th }}$ Edition) was used. The residential portions of the development were represented by "Multifamily Residential Units (high-rise)". The office space assumed the "General Office Building" land use and generated reasonable numbers given the location of the development and access to transit and active transportation infrastructure. The retail component of the space is challenging to define, but it is generally assumed that the nature and the location of the development will not lend itself to a retail use that generates an excessively high volume of new traffic. Frequently, retail space in such developments provide service to local area residents and generate little additional vehicle traffic. For the purposes of this study, the Shopping Center land use was selected as the most reasonable (and conservative) representation of trips to be generated from this development.

The proposed development will require removal of the existing building and construction of the new mixed-use development. As there has been little activity at the existing building in recent years and when operational, the single story building generated relative low traffic volumes, no traffic has been eliminated from the network to account for removal of the building.

3.2.1 Trip Generation

The addition of new traffic related to the development is summarized in the table below and a more detailed summary of the trip generation rates, and background calculations are provided in Appendix B of this report. Internal capture rates were estimated using the National Cooperative Highway Research Program (NCHRP) methodologies and no pass-by trips were assumed for the development (i.e. all trips were assigned as new trips to the development).

Table 3-1: Trip Generation Summary

	ITE Land	AM Peak			PM Peak		
	Use Type	Enter	Exit	Total	Enter	Exit	Total
Multifamily (High Rise)	ITE 222	12	36	48	31	20	51
Office	ITE 710	8	1	9	1	8	9
Misc. Retail	ITE 820	5	3	8	16	18	34
Internal Capture Trips	(NCHRP)	0	0	0	-9	-9	-18
TOTAL		$\mathbf{2 5}$	$\mathbf{4 0}$	$\mathbf{6 5}$	$\mathbf{3 9}$	$\mathbf{3 7}$	$\mathbf{7 6}$

Given the proximity to Bridge transit hub and access to the robust active transportation network, it is expected that the development will generate traffic at rates significantly less than those estimated for "typical" mixed use developments. In the case of this development, trip reduction is expected to impact both origin related traffic (i.e. residents traveling from the development to work) as well as destination-based trips (i.e. people traveling to the office or retail portions of the development). In addition, the development is at a location that should incentivize the use of alternate modes of travel given the congestion frequently experienced on the Macdonald Bridge. Nonetheless, no additional trip reduction factors were assumed for the purposes of this study.

3.3 Trip Distribution and Assignment

It is assumed that traffic will distribute itself through the network in a similar manner to the existing traffic. The new building will have a mix of inbound peak traffic and outbound peak traffic (i.e. primarily inbound office traffic and outbound residential traffic in the AM peak).

3.3.1 Driveway Location

The location for the development's driveway access to the underground parking structure has been discussed extensively and various options have been proposed. The original and preferred location from a traffic operations and safety perspective was to locate the driveway at the northeast corner of the development connecting to the main circulation aisle through the Sportsplex parking lot. This location corresponded with one of the existing driveways to the former Scotiabank surface parking lot, thought HRM informed the developer that any access off the Sportsplex parking lot would not be permitted.

This resulted in the evaluation of alternative access locations which identified one option off Nantucket Avenue and one option off Wyse Road. Both alternative access points would require some level of turn restrictions to function effectively which is discussed in greater detail in the conclusions section of this report. A preliminary analysis of the Wyse Road and Nantucket Avenue driveway options shows that there is very little difference on the impacts to network traffic operations between the two options. Therefore, for the purposes of this study, we have analyzed the network using the Nantucket Road intersection only and further assumed that this intersection would function as a right-in, right-out only access.

Regardless of the access driveway, adjacent intersections can experience some level of congestion related to access to the Macdonald Bridge. It is therefore anticipated that entry and exit movements from the development may vary day-to-day depending on the level of congestion on the adjacent roadways. It is also anticipated that congestion may result in some drivers electing to use alternate routes to get between the development and their intended external origin or destination. The trip assignment assumptions and results are reflected in the spreadsheets and tables included in Appendix C of this report.

4 Analysis

4.1 Transportation Modelling

A microscopic traffic model was prepared using the Synchro/SimTraffic platform for the AM and PM peak hours of analysis. Detailed output for each of the scenarios is provided in Appendix D of the report. The analysis included the following models for each of the AM and PM peaks:

- 2019 existing conditions;
- 2024 conditions with background traffic only; and,
- 2024 with background and development traffic.

The trip assignment process suggested that traffic entering and exiting the development on Nantucket Avenue will have to use circuitous routes in some cases to get to or from the driveway. For example, a driver approaching the site from the northwest (say from Dartmouth Crossing), will likely use Boland Street to Wyse Road then turn left onto Nantucket to enter the driveway because a left turn is not permitted from Nantucket to the driveway. This study assumes that all drivers remain on the main road network and use the most convenient route between the driveway and their external origin or destination, though it is possible some drivers may elect to use various shortcut or U-turn options to shorten their routes.

In general, intersections in the study area operate at a reasonably good level of service with limited delays and queues, while the intersection of Wyse Road with the Macdonald Bridge and Nantucket can experience frequent congestion during the peak hours. The individual intersections most impacted by the development are discussed in greater detail in the following sections and detailed results for all intersections for each analysis scenario are provided in Appendix D of this report.

4.2 Development Driveway

The development's driveway was assumed to operate as a right-in, right-out only access. The traffic signals at the Wyse Road intersection immediately to the south combined with the limited eastbound left turn volumes from Wyse to Nantucket and three-lane cross section adjacent to the driveway result in significant gaps in traffic allowing the driveway movements to operate at a high level of service. Modeling results show that in the worst case, the driveway intersection operates with a volume to capacity ratio of 0.25 or less, delays less than 10 seconds and minimal queuing. Detailed results are provided for the 2024 Development scenarios only (driveway is not present in existing and background traffic only scenarios) in Appendix D of this report for intersection \#18: Nantucket and Driveway.

4.3 Nantucket Ave/Sportsplex/Mall Driveway

This is the first intersection immediately north of the site and accommodates all traffic exiting the site if the development's driveway is located on Nantucket Street. Conversely, all traffic entering the site will come from the south and will not travel through this intersection. The Nantucket driveway option therefore represents the worst-case scenario for traffic operations as volumes at this intersection will would be lower if the driveway were located on Wyse Road. This intersection includes pedestrian actuated traffic signals on the north side of the intersection. The majority of green time remains attributed to through movements on Nantucket Avenue to service volumes coming off the Macdonald Bridge. This intersection is located at an adequate distance from the proposed driveway to meet the minimum 30 meter separation distance suggested by HRM by-laws.

The Synchro modeling results suggest that the AM peak experiences maximum volume to capacity ratio's of about 0.50 (50% capacity) today and 0.51 under 2024 development conditions with an overall intersection capacity utilization of about 53%. There is little change in operational results between existing and future development conditions during AM or PM peak hours. The two figures below present the volumes, volume to capacity ratio's and average vehicle delays for each movement at the intersection during the AM and PM peak hours.

AM Peak		Mall Driveway			Sportsplex			Nantucket NB			Nantucket SB				
		EBL									${ }_{S B L}$				
		$4{ }^{4}$		NT1			tits								
	Vol					5	3	4	39	24	280	44	20	939	59
	V/C			0.01	0.12			0.16		0.04	0.50				
	Delay			0.0	14.2			5.7		1.7	8.1				
No	Vol			5	3	4	40	25	287	45	21	963	60		
	V/C			0.01	0.12			0.17		0.05	0.51				
	Delay			0.0	14.2			5.7		1.7	8.2				
	Vol			5	3	4	40	25	326	47	21	963	60		
	V/C			0.01	0.12			0.19		0.05	0.51				
-	Delay			0.0	14.2			5.8		1.7	8.2				

In general, this intersection operates at a high level of performance throughout all scenarios and given the robust nature of the adjacent road network, no specific improvements are required at this intersection to accommodate the development. Modelling results suggest that there may be some benefits achieved for operations on Nantucket with improved coordination between the signals at the Sportsplex Driveway and signals at Wyse Road with Nantucket.

4.4 Nantucket Ave. / Victoria Rd. / School St.

The second signalized intersection to the north of the site has very limited impact from development-based traffic which composes about 2% of the overall traffic at the intersection in the 2024 development scenario. The heaviest movements during the AM peak hour are the eastbound right turn and westbound left turn from Victoria to Nantucket and the modelling results suggest an overall intersection capacity utilization of about 73% with volume to capacity ratios remaining less than 0.60 on all movements.

PM peak traffic is impacted by the heavier volume of northbound traffic on Nantucket making a left turn onto Victoria Road resulting in a movement v / c ratio of around 0.95 and some substantial queuing. That said, the queuing is not unreasonable given the heavy volume of traffic crossing the Macdonald Bridge during peak hour operations and there is available capacity on other movements at the intersection that could allow a more even distribution of capacity utilization if desired. Opposing traffic on School Road is relatively low so the northbound left turn movement generally operates with limited delay. Overall capacity utilization is around 77% at this intersection.

AM Peak		Victoria Road			Victoria Road			Nantucket Avenue			School Street		
		4			- 1			Fi			4		
No	Vol	10	80	510	330	300	27	165	45	109	20	180	10
	V/C	0.11		0.53	0.57	0.39		0.45	0.25		0.36		
	Delay	19.3		14.3	15.5	11.0		19.7	6.2		16.0		
İ	Vol	10	82	523	338	308	28	169	46	112	21	185	10
	V/C	0.11		0.54	0.58	0.40		0.47	0.26		0.37		
	Delay	19.3		14.5	15.5	11.0		19.7	6.2		16.0		
	Vol	10	82	523	338	308	28	198	48	120	22	185	10
	V/C	0.11		0.54	0.58	0.40		0.55	0.27		0.37		
	Delay	19.3		14.5	15.5	11.0		21.8	6.1		16.0		

PM Peak		Victoria Road			Victoria Road			Nantucket Avenue			School Street		
		A			1 1			\cdots			4		
\|	Vol	20	209	368	134	199	50	577	65	169	20	48	10
	V／C	0.46		0.58	0.49	0.48		0.87	0.26		0.09		
	Delay	32.9		21.9	24.0	19.2		28.6	3.0		6.1		
	Vol	21	214	377	137	204	51	592	67	173	21	49	10
	V／C	0.46		0.58	0.49	0.48		0.87	0.26		0.09		
	Delay	32.9		21.9	24.0	19.2		28.6	3.0		6.1		
NiN⿳亠二口欠刂	Vol	21	214	377	137	204	51	621	68	179	23	49	10
	V／C	0.48		0.59	0.51	0.50		0.95	0.27		0.10		
	Delay	32.9		22.2	24.8	19.5		39.2	3.0		6.2		

4．5 Wyse Rd／Macdonald Bridge／Nantucket

This intersection is one of the highest volume intersections in HRM and is characterized by eastbound double right，westbound double left，southbound double through lanes on the approaches．Operations vary significantly day－to－day depending on the peak traffic characteristics that are often dependent on driver choices on the approaching road network．The AM peak hour frequently experiences some congestion as vehicles enter onto the Macdonald Bridge from all three approaches．

Queues frequently extend across the Macdonald Bridge from the Halifax side of the Harbour which contributes to congestion at this intersection．Exacerbating the challenges are the left turn bus movements from the westbound dedicated bus lane on Wyse Road onto the Macdonald Bridge which frequently blocks the eastbound right turn movements onto the Bridge from Wyse Road．

For all these reasons，this is a difficult intersection to accurately model．The modelling result suggest that in the absence of backups on the Macdonald Bridge（from the Halifax side）that limit the efficiency of the intersection，the intersection operates with an overall capacity utilization of about 82% in the AM and PM peaks．During these periods，movements to the Bridge frequently operate with a V／C ratio over 0.9 and substantial queuing can occur．Often，one or two of the three approach legs run at capacity and observations in the area suggest that some drivers will seek alternate routes to less congested approaches．

AM Peak		Wyse（EB）			Wyse（WB）			Macdonald Brdg			Nantucket		
				「＂									
ain	Vol	66	100	665	803	83	28	143	254	485	0	903	8
	V／C	0.26	0.27	0.74	0.90			0.70	0.12	0.51		0.83	
	Delay	33.5	32.7	33.4	47.8			37.8	16.5	3.8		37.0	
	Vol	68	103	682	823	85	29	147	260	497	0	926	8
	V／C	0.26	0.28	0.76	0.92			0.72	0.12	0.52		0.85	
	Delay	33.6	32.9	34.2	49.8			39.8	16.5	3.9		38.6	
	Vol	76	103	698	823	85	35	147	271	497		926	8
	V／C	0.29	0.28	0.78	0.92			0.72	0.13	0.52		0.85	
	Delay	34.3	32.8	35.0	49.9			40.0	16.6	3.9		38.8	

Various signal timing adjustments can be made during the AM peak hours to distribute capacity and queuing through the intersection，though all have very limited impact on the overall operations at the intersection．Given the nature of the intersection as the entrance to the Macdonald Bridge，it is expected that there will always be some level of congestion for movements approaching the bridge．As the development based volumes are so low，there is virtually no change to performance measures with the development traffic added．

PM Peak		Wyse（EB）			Wyse（WB）			Macdonald Bridge			Nantucket		
				7＇7									
	Vol	60	128	375	447	142	50	283	654	1011		543	22
	V／C	0.29	0.41	0.39	0.66	0.26		0.70	0.26	0.85		0.48	
	Delay	34.4	34.9	22.5	36.4	14.4		26.6	13.6	13.0		25.0	
菏咅品亳	Vol	62	131	384	458	146	51	290	671	1037		557	23
	V／C	0.29	0.41	0.39	0.66	0.26		0.70	0.26	0.85		0.48	
	Delay	39.0	41.7	13.9	47.0	19.7		20.1	10.7	16.2		20.8	
	Vol	74	131	400	458	146	64	290	687	1037		557	23
	V／C	0.36	0.41	0.41	0.67	0.28		0.75	0.28	0.87		0.50	
	Delay	36.0	34.8	22.8	36.9	14.2		29.7	14.0	15.3		25.5	

PM peak operations at this intersection are slightly better than during the AM peak hour as level of service through the intersection is heavily dictated by the ability to get vehicles through the Macdonald Bridge toll plaza and then through the signals at Wyse Road．The available capacity of the signals typically causes queueing to extend across the bridge toward the Halifax side and limits the amount of traffic downstream of the intersection．With respect to the impacts of the development，the new traffic composes well less the 1% of the total traffic through the intersection and therefore does not generate any specific recommendations for improvements at this intersection．

4.6 Wyse Road and Thistle Street

This is the first intersection east of the proposed development and like other intersections in the study area, development traffic has minimal impact on the intersection's operations. Development traffic composes about 1\% of total traffic through the intersection during the peak hours. V/C ratios and overall intersection capacity utilization remain below 50% during the AM peak hour with limited delay and queuing. During the PM peak the heavier eastbound left to Thistle competes with the westbound through movement on Wyse resulting in v / c ratios of about 0.9 , though the traffic signals help keep delays and queue lengths at reasonable levels.

AM Peak		Wyse (EB)		Wyse (WB)		Thistle	
				$\begin{aligned} & *- \\ & \text { WBT } \end{aligned}$			$\begin{aligned} & 4 \\ & \hline \operatorname{SBR} \end{aligned}$
		\% 14		中 ${ }^{\text {a }}$		\% ${ }^{\text {T }}$	
$\underset{\sim}{\sim} \underset{\sim}{\stackrel{\rightharpoonup}{x}}$	Vol	88	497	565	41	57	349
	V/C	0.56	0.50	0.61		0.07	0.43
	Delay	27.1	15.2	16.4		8.0	6.5
	Vol	90	510	579	42	58	358
	V/C	0.57	0.50	0.61		0.07	0.44
	Delay	28.0	15.2	16.3		8.2	7.1
	Vol	90	510	583	42	65	361
	V/C	0.58	0.50	0.62		0.08	0.45
	Delay	28.3	15.2	16.4		8.2	7.2

PM Peak		Wyse (EB)		Wyse (WB)		Thistle	
				$\begin{array}{ll} 4 & 4 \\ \text { WBT } & \text { WBR } \end{array}$			
		* 14				${ }^{7}$	
	Vol	362	687	671	62	70	172
	V/C	0.89	0.39	0.79		0.14	0.30
	Delay	37.0	8.6	25.6		16.2	4.6
	Vol	371	704	688	64	72	176
	V/C	0.89	0.39	0.79		0.14	0.30
	Delay	37.0	8.6	25.6		16.2	4.6
	Vol	371	704	694	64	79	182
	V/C	0.92	0.40	0.81		0.16	0.32
	Delay	41.6	8.6	26.7		16.5	4.6

4.7 Development Driveway Location

The originally proposed driveway location from the Sportsplex parking lot was not permitted. Therefore, alternative driveway options on Nantucket Avenue and Wyse Road were evaluated and summarized in a March 2020 letter that addressed the adjacent roadway environment, and operational and safety implications of each driveway option. The letter is attached in Appendix E for reference with the key findings summarized in the points below:

- Both driveway options are feasible and meet the 30-meter minimum required separation from the nearest street line of the Wyse/Nantucket/Macdonald Bridge intersection;
- Driveway volumes are low which minimize the driveway's impacts on adjacent traffic;
- Due to the proximity of the intersection and the adjacent lanes / operations, both driveway options should be configured as right-in, right-out driveways. Comments provided by HRM suggest that supplementary measures may be required to limit the possibility of making left turn movements. Further discussion should take place as the project moves into detailed design stages and options could include directional islands and the extension of medians;
- Both driveway options introduce some level of route restrictions between the development and external origins / destinations. The specific route challenges associated with each driveway option are detailed in the attached letter, though it is difficult to predict exactly how drivers will respond to various traffic conditions. Suffice to say that the surrounding road network is robust and there are a wide variety of alternative routing options that remain relatively short and convenient;
- Comments from Halifax Transit suggest that the Nantucket driveway option appears to minimize the potential impacts to transit operations and is therefore preferred;
- Comments from HRM have indicated that detailed design work is proceeding on unidirectional protected bicycle lanes on Wyse Road, between Boland Road and Thistle St. with construction expected to begin in 2020.

Based on the various analyses and feedback comments, it appears that there is a collective preference to pursue the Nantucket Road driveway option. Under this scenario, the preferred driveway location should maximize the distance away from the Wyse Road intersection while not compromising spacing to the Sportsplex driveway or the ability to achieve appropriate grading to the development's parking structure. At the current time, the preferred location appears to be approximately at the midpoint between Wyse Road and the Sportsplex driveway. This results in about 40 meters between the driveway and each of the adjacent intersections.

Given the complex environment and interests of various HRM departments, further refinement of the driveway location and operational characteristics should be discussed as part of the detailed design process and subsequent to this transportation impact study.

5. Conclusions

This report has analyzed the impacts of the removal of an existing building and the addition of a new multi-unit residential development with office and retail space. The analysis shows that the development contributes a very small amount of traffic to the adjacent roadways and intersections relative to the overall traffic on the road network. Furthermore, the results show very little change to key performance parameters such as delays, queue length or volume to capacity ratios between conditions before and after the development is in place.

The surrounding road network is characterized by high volumes of commuter-based traffic, most notably related to volumes onto and off the Macdonald Bridge between Dartmouth and Halifax. This commuter traffic is quite consistent during the weekdays, though the intensity of traffic on the three directional approaches to the Bridge can vary significantly. In general, the development fits very well into the surrounding environment being directly located on several core transportation routes and having direct access to robust transit and active transportation networks. It is expected that residents of this development are highly likely to utilize both the transit and AT networks which in turn help to reduce additional vehicle traffic on the roadways.

The analysis suggests that there are no improvements required to the external road network to accommodate the proposed development. Analysis and HRM feedback suggests that the preferred location of the site's parkade driveway is off Nantucket Avenue approximately 40 meters north of Wyse Road. Refinement of the driveway's location and geometrics should be undertaken in conjunction with HRM as the project moves into the detailed design stages.

We trust that this report satisfies the Halifax requirements for the preparation of Transportation Impact Studies. Should there be any questions or comments regarding the content of the study, please do not hesitate to contact the undersigned.

Sincerely,
Original Signed

Roger N. Boychuk, P.Eng.
Senior Transportation Engineer

Fathom Studio (formerly Ekistics Planning \& Design and Form:Media)
1 Starr Lane, Dartmouth, NS B2Y 4V7
c: (902) 2331152
www.fathomstudio.ca

APPENDIX A

Traffic Counts

HALIFAX REGIONAL MUNICIPALITY

MANUAL TRAFFIC COUNTS

TOTAL
PEAK
15 MIN PEAK
PEAK HOUR FACTOR
TWO WAY TOTALS

20	930	58	0	268	32	0	0	2	3	4	39	1356
	1008			300			2			46		
	1100			372			8			60		
	0.92			0.81			0.25			0.77		
	1315			1235			64			98		FACTOR
												1.01
												1370

DAY	DATE	MONTH	YEAR
TUES	7	NOV	2017

TIME: 15 MIN INTERVALS		FROM THE EAST			FROM THE WEST			FROM THE NORTH			FROM THE SOUTH			TOTAL
		L	S	R	L	S	R	L	S	R	L	S	R	
08:00:00 AM	08:15:00 AM	2	197	13	0	65	4	0	0	0	1	1	1	284
08:15:00 AM	08:30:00 AM	4	223	12	1	79	2	0	0	0	0	2	5	328
08:30:00 AM	08:45:00 AM	2	204	14	0	71	3	0	0	0	1	0	3	298
08:45:00 AM	09:00:00 AM	5	218	12	0	65	3	0	0	0	1	2	2	308

TOTAL	13	842	51	1	280	12	0	0	0	3	5	11	1218
PEAK		906			293			0			19		
15 MIN PEAK		956			328			0			28		
PEAK HOUR FACTOR		0.95			0.89			0			0.68		
TWO WAY TOTALS		1197			1138			57			44		FACTOR
													1.01
													1230

VEHICULAR GRAPHIC SUMMARY SHEET
INTERSECTION :

HALIFAX REGIONAL MUNICIPALITY

MANUAL TRAFFIC COUNTS

INTERSECTIO					UC	AVEN	T D	U	OR					
											$\overline{A T}$			JDY
DAY	DATE	MONTH	YEAR								CO			
TUES	7	NOV	2017											
STREET:		NANTU	CKET	NUE		KEET	NUE		MAL		RT	S	SPL	
TIME:		FRO	M THE			THE			HE			HE		TOTAL
15 MIN INTER	VALS	L	S	R	L	S	R	L	S	R	L	S	R	
04:00:00 PM	04:15:00 PM	0	92	19	0	183	3	0	0	3	0	0	8	308
04:15:00 PM	04:30:00 PM	1	98	9	0	197	1	0	0	3	0	0	8	317
04:30:00 PM	04:45:00 PM	0	103	16	0	201	2	0	0	4	1	0	13	340
04:45:00 PM	05:00:00 PM	0	108	22	1	200	2	0	0	2	0	0	12	347

TOTAL	1	401	66	1	781	8	0	0	12	1	0	41	1312
PEAK		468			790			12			42		
15 MIN PEAK		520			812			16			56		
PEAK HOUR FACTOR		0.9			0.97			0.75			0.75		
TWO WAY TOTALS		1290			1204			79			51		FACTOR
													1.01
													1325

TOTAL	1	451	74	1	791	11	0	0	7	5	0	24	1365
PEAK		526			803			7			29		
15 MIN PEAK		568			872			12			52		
PEAK HOUR FACTOR		0.93			0.92			0.58			0.56		
TWO WAY TOTALS		1341			1266			82			41		FACTOR
													1.01
													1379

VEHICULAR GRAPHIC SUMMARY SHEET
INTERSECTION :

HALIFAX REGIONAL MUNICIPALITY
TRANSPORTATION \& PUBLIC WORKS
CODE NO.
17-TM-311
TRAFFIC \& RIGHT OF WAY

MANUAL TRAFFIC COUNTS

INTERSECTIO						LE S	T	OR	AD					
											EAT			
DAY	DATE	MONTH	YEAR								CO			
TUESDAY	17	OCT	2017											
STREET:		THIS	TLE S			LE S			IA			RIA		
TIME:		FRO	M THE			THE			HE			THE		TOTAL
15 MIN INTER	VALS	L	S	R	L	S	R	L	S	R	L	S	R	
07:00:00 AM	07:15:00 AM	0	59	69	2	20	2	12	18	12	19	92	0	305
07:15:00 AM	07:30:00 AM	0	73	64	8	25	1	13	10	12	17	89	0	312
07:30:00 AM	07:45:00 AM	1	66	56	8	22	1	12	12	14	25	107	1	325
07:45:00 AM	08:00:00 AM	2	79	60	12	26	1	15	18	13	23	85	0	334

TOTAL
PEAK
15 MIN PEAK
PEAK HOUR FACTOR
TWO WAY TOTALS

3	277	249	30	93	5	52	58	51	84	373	1
	529			128			161		458		
	564		156			184		532			
	0.94				0.88		0.86				
	675		540		813	524					
					1.01						

DAY	DATE	MONTH	YEAR
TUESDAY	17	OCT	2017

TIME: 15 MIN INTERVALS		FROM THE EAST			FROM THE WEST			FROM THE NORTH			FROM THE SOUTH			TOTAL
		L	S	R	L	S	R	L	S	R	L	S	R	
08:00:00 AM	08:15:00 AM	2	48	48	22	18	3	19	28	15	12	74	1	290
08:15:00 AM	08:30:00 AM	3	72	58	23	23	5	19	29	19	10	62	1	324
08:30:00 AM	08:45:00 AM	15	75	55	13	58	5	17	24	14	2	43	1	322
08:45:00 AM	09:00:00 AM	21	61	59	11	42	2	22	31	14	20	46	0	329

TOTAL	41	256	220	69	141	15	77	112	62	44	225	3	1265
PEAK	517			225			251			272			
15 MIN PEAK	580			304			268			348			
PEAK HOUR FACTOR	0.89			0.74			0.94			0.78			
TWO WAY TOTALS	738			587			765			440			FACTOR
													1.01
													1278

HALIFAX REGIONAL MUNICIPALITY
TRANSPORTATION \& PUBLIC WORKS
CODE NO.
17-TM-311
TRAFFIC \& RIGHT OF WAY

MANUAL TRAFFIC COUNTS

INTERSECTION:		THISTLE STREET AT VICTORIA ROAD	
DAY	DATE	MONTH	YEAR
TUESDAY	17	OCT	2017

STREET:			E S			LE S			IA S			IA		
TIME:			THE			THE			HE			THE		TOTAL
15 MIN INTER	VALS	L	S	R	L	S	R	L	S	R	L	S	R	
04:00:00 PM	04:15:00 PM	1	21	21	11	124	4	50	19	8	5	47	2	313
04:15:00 PM	04:30:00 PM	3	38	40	9	143	3	69	39	8	6	58	3	419
04:30:00 PM	04:45:00 PM	0	24	25	10	111	6	59	25	11	12	77	3	363
04:45:00 PM	05:00:00 PM	1	32	35	7	117	2	66	24	21	14	45	0	364

TOTAL
PEAK
15 MIN PEAK
PEAK HOUR FACTOR
TWO WAY TOTALS

5	115	121	37	495	15	244	107	48	37	227	8	1459
241			547			399			272			
324			620			464			368			
0.74			0.88			0.86			0.74			
988			747			784			399			FACTOR
												1.01
												1474

DAY	DATE	MONTH	YEAR
TUESDAY	17	OCT	2017

TIME: 15 MIN INTERVALS		FROM THE EAST			FROM THE WEST			FROM THE NORTH			FROM THE SOUTH			TOTAL
		L	S	R	L	S	R	L	S	R	L	S	R	
05:00:00 PM	05:15:00 PM	0	38	26	8	116	4	64	34	17	11	78	1	397
05:15:00 PM	05:30:00 PM	2	45	25	8	123	9	56	9	9	7	45	0	338
05:30:00 PM	05:45:00 PM	1	32	28	7	112	7	56	29	18	6	36	1	333
05:45:00 PM	06:00:00 PM	0	29	38	9	117	7	57	20	19	4	46	0	346

TOTAL	3	144	117	32	468	27	233	92	63	28	205	2	1414
PEAK		264			527			388			235		
15 MIN PEAK		288			560			460			360		
PEAK HOUR FACTOR		0.92			0.94			0.84			0.65		
TWO WAY TOTALS		967			762			742			357		FACTOR
													1.01
													1428

MANUAL TRAFFIC COUNTS

MANUAL TRAFFIC COUNTS

INTERSECTION:		BOLAND ROAD AT WYSE ROAD							WEATHER RECORDER			SUNNY / CLEAR		
DAY	DATE	MONTH	YEAR											
WED	7	SEPT	2016											
STREET: TIME: 15 MIN INTERVALS		BOLAND ROAD			FROM THE WEST			WYSE ROAD			WYSE ROAD			
		FROM THE EAST						FROM THE NORTH			FROM THE SOUTH			TOTAL
		L	S	R	L	S	R	L	S	R	L	S	R	
04:00:00 PM	04:15:00 PM	30	0	15	0	0	0	16	63	0	0	97	107	328
04:15:00 PM	04:30:00 PM	41	0	16	0	0	0	11	91	0	0	115	100	374
04:30:00 PM	04:45:00 PM	44	0	14	0	0	0	10	77	0	0	91	89	325
04:45:00 PM	05:00:00 PM	34	0	15	0	0	0	16	91	0	0	82	84	322
TOTAL PEAK 15 MIN PEAK PEAK HOUR FACTOR TWO WAY TOTALS		149	0	60	0	0	0	53	322	0	0	385	380	1349
		209			0			375			765			
		232			0			428			860			
		0.9			0			0.88			0.89			
		642			0			820			1236			FACTOR
														1
DAY		MONTH YEAR												1349
WED	7	SEPT	2016											
TIME: 15 MIN INTERVALS		FROM THE EAST			FROM THE WEST			FROM THE NORTH			FROM THE SOUTH			TOTAL
		L	S	R	L	S	R	L	S	R	L	S	R	
05:00:00 PM	05:15:00 PM	48	0	20	0	0	0	21	111	0	0	99	85	384
05:15:00 PM	05:30:00 PM	45	0	18	0	0	0	14	90	0	0	99	78	344
05:30:00 PM	05:45:00 PM	56	0	15	0	0	0	21	76	0	0	91	61	320
05:45:00 PM	06:00:00 PM	39	0	15	0	0	0	8	68	0	0	97	67	294
TOTAL		188	0	68	0	0	0	64	345	0	0	386	291	1342
PEAK		256			0			409			677			
15 MIN PEAK		284			0			528			736			
PEAK HOUR	FACTOR	0.9			0			0.77			0.92			
TWO WAY TOTALS		611			0			863			1210			FACTOR
														1
		1342												

Turning Movement Data

Start Time	Wyse Road Southbound Southbound						Nantucket Ave Westbound Westbound						Wyse Road Northbound Northbound						Macdonald Bridge Eastbound Eastbound						Int. Total
	Right	Thru	Left	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \end{aligned}$	Right	Thru	Left	U-Turn	Peds	App.	Right	Thru	Left	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \end{aligned}$	Right	Thru	Left	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \end{aligned}$	
7:00 AM	175	15	7	0	0	197	2	212	0	0	3	214	2	13	196	0	1	211	100	52	34	0	3	186	808
7:15 AM	201	21	18	0	2	240	3	196	0	0	2	199	6	19	197	0	5	222	120	66	45	0	7	231	892
7:30 AM	140	16	19	0	0	175	2	243	0	0	2	245	6	23	212	0	1	241	120	56	36	0	6	212	873
7:45 AM	177	28	15	0	0	220	2	225	0	0	0	227	6	16	221	0	2	243	125	53	25	0	6	203	893
Hourly Total	693	80	59	0	2	832	9	876	0	0	7	885	20	71	826	0	9	917	465	227	140	0	22	832	3466
8:00 AM	147	20	14	0	1	181	1	239	0	0	6	240	10	25	173	0	0	208	118	79	37	0	6	234	863
8:15 AM	143	34	12	0	1	189	10	194	0	0	6	204	10	27	176	0	4	213	142	61	31	0	5	234	840
8:30 AM	130	40	19	0	1	189	7	192	0	0	2	199	9	24	161	0	4	194	138	82	41	0	5	261	843
8:45 AM	127	40	21	0	2	188	5	155	1	0	2	161	10	32	124	0	1	166	131	56	43	0	2	230	745
Hourly Total	547	134	66	0	5	747	23	780	1	0	16	804	39	108	634	0	9	781	529	278	152	0	18	959	3291
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	80	40	11	0	0	131	8	74	0	0	7	82	15	21	72	0	6	108	119	93	48	0	0	260	581
11:15 AM	74	23	17	0	0	114	19	78	0	0	5	97	10	21	88	0	4	119	100	94	50	0	1	244	574
11:30 AM	76	32	13	0	0	121	10	83	0	0	5	93	15	26	118	0	3	159	128	98	61	0	1	287	660
11:45 AM	70	33	17	0	0	120	21	88	0	0	2	109	19	42	87	0	1	148	96	99	72	0	5	267	644
Hourly Total	300	128	58	0	0	486	58	323	0	0	19	381	59	110	365	0	14	534	443	384	231	0	7	1058	2459
12:00 PM	68	40	14	0	0	122	12	99	1	0	9	112	15	35	92	0	2	142	109	93	79	0	3	281	657
12:15 PM	86	30	14	0	0	130	12	72	0	0	3	84	6	50	113	0	4	169	100	114	69	0	5	283	666
12:30 PM	74	55	19	0	0	148	23	85	0	0	13	108	10	34	93	0	4	137	119	80	51	0	2	250	643
12:45 PM	79	42	17	0	0	138	15	97	0	0	2	112	13	48	93	0	5	154	147	91	66	0	7	304	708
Hourly Total	307	167	64	0	0	538	62	353	1	0	27	416	44	167	391	0	15	602	475	378	265	0	17	1118	2674
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4:00 PM	90	39	17	0	0	146	3	122	0	0	2	125	11	37	106	0	5	154	205	164	82	0	2	451	876
4:15 PM	71	33	10	0	1	114	8	153	0	0	3	161	6	37	128	0	4	171	233	148	63	0	12	444	890
4:30 PM	87	46	16	0	0	149	3	145	1	0	5	149	11	47	106	0	6	164	231	116	71	0	9	418	880
4:45 PM	93	38	12	0	2	143	9	145	0	0	6	154	4	41	95	0	6	140	238	181	72	0	3	491	928
Hourly Total	341	156	55	0	3	552	23	565	1	0	16	589	32	162	435	0	21	629	907	609	288	0	26	1804	3574
5:00 PM	100	31	15	0	0	146	6	128	0	0	1	134	7	50	115	0	1	172	244	147	64	0	1	455	907
5:15 PM	88	27	22	0	0	137	5	143	0	0	3	148	5	32	122	0	5	159	253	173	77	0	0	503	947
5:30 PM	94	32	7	0	0	133	2	127	0	0	1	129	10	19	115	0	0	144	276	153	70	0	0	499	905
5:45 PM	69	31	22	0	0	122	5	146	0	0	3	151	5	25	126	0	3	156	206	146	74	0	0	426	855
Hourly Total	351	121	66	0	0	538	18	544	0	0	8	562	27	126	478	0	9	631	979	619	285	0	1	1883	3614
Grand Total	2539	786	368	0	10	3693	193	3441	3	0	93	3637	221	744	3129	0	77	4094	3798	2495	1361	0	91	7654	19078
Approach \%	68.8	21.3	10.0	0.0	-	-	5.3	94.6	0.1	0.0	-	-	5.4	18.2	76.4	0.0	-	-	49.6	32.6	17.8	0.0	-	-	-
Total \%	13.3	4.1	1.9	0.0	-	19.4	1.0	18.0	0.0	0.0	-	19.1	1.2	3.9	16.4	0.0	-	21.5	19.9	13.1	7.1	0.0	-	40.1	-
All Vehicles (no classification)	2539	786	368	0	-	3693	193	3441	3	0	-	3637	221	744	3129	0	-	4094	3798	2495	1361	0	-	7654	19078
\% All Vehicles (no classification)	100.0	100.0	100.0	-	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0
Bicycles on Crosswalk	-	-	-	-	3	-	-	-	-	-	2	-	-	-	-	-	0	-	-	-	-	-	5	-	-

Turning Movement Peak Hour Data (7:15 AM)

Start Time	Wyse Road Southbound Southbound						Nantucket Ave Westbound Westbound						Wyse Road Northbound Northbound						Macdonald Bridge Eastbound Eastbound						
	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Int. Total
7:15 AM	201	21	18	0	2	240	3	196	0	0	2	199	6	19	197	0	5	222	120	66	45	0	7	231	892
7:30 AM	140	16	19	0	0	175	2	243	0	0	2	245	6	23	212	0	1	241	120	56	36	0	6	212	873
7:45 AM	177	28	15	0	0	220	2	225	0	0	0	227	6	16	221	0	2	243	125	53	25	0	6	203	893
8:00 AM	147	20	14	0	1	181	1	239	0	0	6	240	10	25	173	0	0	208	118	79	37	0	6	234	863
Total	665	85	66	0	3	816	8	903	0	0	10	911	28	83	803	0	8	914	483	254	143	0	25	880	3521
Approach \%	81.5	10.4	8.1	0.0	-	-	0.9	99.1	0.0	0.0	-	-	3.1	9.1	87.9	0.0	-	-	54.9	28.9	16.3	0.0	-	-	-
Total \%	18.9	2.4	1.9	0.0	-	23.2	0.2	25.6	0.0	0.0	-	25.9	0.8	2.4	22.8	0.0	-	26.0	13.7	7.2	4.1	0.0	-	25.0	-
PHF	0.827	0.759	0.868	0.000	-	0.850	0.667	0.929	0.000	0.000	-	0.930	0.700	0.830	0.908	0.000	-	0.940	0.966	0.804	0.794	0.000	-	0.940	0.986
All Vehicles (no classification)	665	85	66	0	-	816	8	903	0	0	-	911	28	83	803	0	-	914	483	254	143	0	-	880	3521
\% All Vehicles (no classification)	100.0	100.0	100.0	-	-	100.0	100.0	100.0	-	-	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	2	-	-
\% Bicycles on Crosswalk	-	-	-	-	0.0	-	-	-	-	-	0.0	-	-	-	-	-	0.0	-	-	-	-	-	8.0	-	-
Pedestrians	-	-	-	-	3	-	-	-	-	-	10	-	-	-	-	-	8	-	-	-	-	-	23	-	-
\% Pedestrians	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-	-	-	-	92.0	-	-

Turning Movement Peak Hour Data Plot (7:15 AM)

Turning Movement Peak Hour Data (4:45 PM)

Start Time	Wyse Road Southbound Southbound						Nantucket Ave Westbound Westbound						Wyse Road Northbound Northbound						Macdonald Bridge Eastbound Eastbound						
	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \end{aligned}$	Int. Total
4:45 PM	93	38	12	0	2	143	9	145	0	0	6	154	4	41	95	0	6	140	238	181	72	0	3	491	928
5:00 PM	100	31	15	0	0	146	6	128	0	0	1	134	7	50	115	0	1	172	244	147	64	0	1	455	907
5:15 PM	88	27	22	0	0	137	5	143	0	0	3	148	5	32	122	0	5	159	253	173	77	0	0	503	947
5:30 PM	94	32	7	0	0	133	2	127	0	0	1	129	10	19	115	0	0	144	276	153	70	0	0	499	905
Total	375	128	56	0	2	559	22	543	0	0	11	565	26	142	447	0	12	615	1011	654	283	0	4	1948	3687
Approach \%	67.1	22.9	10.0	0.0	-	-	3.9	96.1	0.0	0.0	-	-	4.2	23.1	72.7	0.0	-	-	51.9	33.6	14.5	0.0	-	-	-
Total \%	10.2	3.5	1.5	0.0	-	15.2	0.6	14.7	0.0	0.0	-	15.3	0.7	3.9	12.1	0.0	-	16.7	27.4	17.7	7.7	0.0	-	52.8	-
PHF	0.938	0.842	0.636	0.000	-	0.957	0.611	0.936	0.000	0.000	-	0.917	0.650	0.710	0.916	0.000	-	0.894	0.916	0.903	0.919	0.000	-	0.968	0.973
All Vehicles (no classification)	375	128	56	0	-	559	22	543	0	0	-	565	26	142	447	0	-	615	1011	654	283	0	-	1948	3687
\% All Vehicles (no classification)	100.0	100.0	100.0	-	-	100.0	100.0	100.0	-	-	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Bicycles on Crosswalk	-	-	-	-	0.0	-	-	-	-	-	0.0	-	-	-	-	-	0.0	-	-	-	-	-	0.0	-	-
Pedestrians	-	-	-	-	2	-	-	-	-	-	11	-	-	-	-	-	12	-	-	-	-	-	4	-	-
\% Pedestrians	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-

Turning Movement Peak Hour Data Plot (4:45 PM)

MANUAL TRAFFIC COUNTS

MANUAL TRAFFIC COUNTS

INTERSECTION DAY	N:	THISTLE STREET AT WYSE ROAD							WEATHER RECORDER			$\begin{gathered} \hline \text { SUNNY } \\ \hline \text { KS } \end{gathered}$			
		MONTH YEAR													
THURS	24	AUG	2017												
STREET: TIME: 15 MIN INT	RVALS	THISTLE STREET						WYSE ROAD			WYSE ROAD				
		FROM THE EAST			FROM THE WEST			FROM THE NORTH			FROM THE SOUTH			TOTAL	
		L	S	R	L	S	R	L	S	R	L	S	R		
04:00:00 PM	04:15:00 PM	3	0	71	0	0	0	25	153	0	0	122	6	380	
04:15:00 PM	04:30:00 PM	14	0	53	0	0	0	51	179	0	0	153	5	455	
04:30:00 PM	04:45:00 PM	17	0	49	0	0	0	86	184	0	0	150	9	495	
04:45:00 PM	05:00:00 PM	20	0	50	0	0	0	89	165	0	0	159	10	493	
TOTAL		54	0	223	0	0	0	251	681	0	0	584	30	1823	
PEAK		277			0			932			614				
15 MIN PEAK		296			0			1080			676				
PEAK HOUR	FACTOR	0.94			0			0.86			0.91				
TWO WAY TOTALS		558			0			1739			1349			FACTOR	
														1.02	
														1859	
DAY	DATE	MONTH YEAR													
THURS	24	AUG 2017													
TIME:15 MIN INTERVALS		FROM THE EAST			FROM THE WEST			FROM THE NORTH			FROM THE SOUTH			TOTAL	
		L	S	R	L	S	R	L	S	R	L	S	R		
05:00:00 PM	05:15:00 PM	19	0	45	0	0	0	92	162	0	0	162	14	494	
05:15:00 PM	05:30:00 PM	15	0	43	0	0	0	89	171	0	0	167	15	500	
05:30:00 PM	05:45:00 PM	16	0	40	0	0	0	88	180	0	0	171	17	512	
05:45:00 PM	06:00:00 PM	19	0	41	0	0	0	86	161	0	0	158	15	480	
TOTAL		69													
		0	169	0	0	0	355	674	0	0	658	61	1986		
PEAK 15 MIN PEAK						0			1029			719			
		238256			0			1072			752				
PEAK HOUR FACTOR		0.93			0			0.96			0.96				
TWO WAY TOTALS		654			0			1856			1462			FACTOR	
														1.02	
														2026	

MANUAL TRAFFIC COUNTS

MANUAL TRAFFIC COUNTS

INTERSECTION:		WINDMILL ROAD AT WYSE ROAD							WEATHER RECORDER			SUNNY		
DAY	DATE	MONTH	YEAR											
THURS	2	NOV	2017											
STREET: TIME: 15 MIN INTERVALS		WYSE ROAD			FROM THE WEST			WINDMILL ROAD			WINDMILL ROAD			
		FROM THE EAST						FROM THE NORTH			FROM THE SOUTH			TOTAL
		L	S	R	L	S	R	L	S	R	L	S	R	
04:00:00 PM	04:15:00 PM	97	0	11	0	0	0	3	45	0	0	30	131	317
04:15:00 PM	04:30:00 PM	123	0	8	0	0	0	7	51	0	0	52	140	381
04:30:00 PM	04:45:00 PM	99	0	5	0	0	0	2	56	0	0	69	143	374
04:45:00 PM	05:00:00 PM	102	0	7	0	0	0	5	43	0	0	72	138	367
TOTAL		421	0	31	0	0	0	17	195	0	0	223	552	1439
PEAK		452			0			212			775			
15 MIN PEAK		524			0			232			848			
PEAK HOUR	FACTOR	0.86			0			0.91			0.91			
TWO WAY TOTALS		1021			0			466			1391			FACTOR
														0.97
														1396
DAY	DATE	MONTH YEAR												
THURS	2	NOV	2017											

TOTAL
PEAK
15 MIN PEAK
PEAK HOUR FACTOR
TWO WAY TOTALS

477	0	35	0	0	0	37	239	0	0	299	557	1644
	512			0			276			856		
	572			0			304			944		
	0.9			0			0.91			0.91		
	1106											
						1572						
FACTOR												

APPENDIX B

Trip Generation

Trip Generation Summary

Alternative: Alternative 1

Phase:	Open Date:	2019-11-10
Project:	Wyse Road Development	Analysis Date:

	Land Use		*	Enter	Exit	Total	*	Enter	Exit	Total	*	Enter	Exit	Total
	Multifamily (High Rise)			352	352	704		12	36	48		31	20	51
	125	Dwelling Units												
710	Office			39	39	78		8	1	9		1	8	9
	8	1000 Sq. Ft. GFA												
820	Retail			170	170	340		5	3	8		16	18	34
	9	1000 Sq. Ft. GLA												
Unadjusted Volume				561	561	1122		25	40	65		48	46	94
Internal Capture Trips				0	0	0		0	0	0		9	9	18
Pass-By Trips				0	0	0		0	0	0		4	4	8
Volume Added to Adjacent Streets				561	561	1122		25	40	65		35	33	68

Total Weekday Average Daily Trips Internal Capture $=0$ Percent
Total Weekday AM Peak Hour of Adjacent Street Traffic Internal Capture $=0$ Percent
Total Weekday PM Peak Hour of Adjacent Street Traffic Internal Capture $=19$ Percent

APPENDIX C

Trip Assignment

Development: Wyse Road Development

Driveway: 1 Development - Nantucket

Origin \#	Route	To		From	
		Distribution \%	Trips	Distribution \%	Trips
1	NW Victoria to Development - Nantucket	20.00	5	20.00	8
2	N School to Development - Nantucket	5.00	1	5.00	2
3	NE Thistle to Development - Nantucket	5.00	1	5.00	2
4	NE Victoria to Development - Nantucket	5.00	1	5.00	2
5	SE Alderney to Development - Nantucket	10.00	3	10.00	4
6	SE Windmill to Development - Nantucket	5.00	1	5.00	2
7	S Macdonald Bridge to Development - Nantucket	40.00	10	40.00	16
8	W Wyse to Development - Nantucket	10.00	3	10.00	4

Development: Wyse Road Development

Driveway: 1 Development - Nantucket

Origin \#	Route	To		From	
		Distribution \%	Trips	Distribution \%	Trips
1	NW Victoria to Development - Nantucket	20.00	8	37.34	14
2	N School to Development - Nantucket	5.00	2	3.25	1
3	NE Thistle to Development - Nantucket	5.00	2	0.00	0
4	NE Victoria to Development - Nantucket	5.00	2	0.00	0
5	SE Alderney to Development - Nantucket	10.00	4	15.33	6
6	SE Windmill to Development - Nantucket	5.00	2	3.99	1
7	S Macdonald Bridge to Development - Nantucket	40.00	16	40.09	15
8	SW Wyse to Development - Nantucket	10.00	4	0.00	0

APPENDIX D

Synchro Output

Lane Group	EBR	WBT	NBL	NBT	NBR	SBL	SBT
Lane Configurations	7	\&		¢ ${ }^{\text {¢ }}$	F		* ${ }^{\text {d }}$
Traffic Volume (vph)	5	4	24	280	44	20	939
Future Volume (vph)	5	4	24	280	44	20	939
Lane Group Flow (vph)	5	49	0	330	48	0	1107
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA
Protected Phases		8		2			6
Permitted Phases	4		2		2	6	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	25.0	25.0	65.0	65.0	65.0	65.0	65.0
Total Split (\%)	27.8\%	27.8\%	72.2\%	72.2\%	72.2\%	72.2\%	72.2\%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0
Total Lost Time (s)	4.5	4.5		4.5	4.5		4.5
Lead/Lag							
Lead-Lag Optimize?							
Act Effct Green (s)	20.5	20.5		60.5	60.5		60.5
Actuated g/C Ratio	0.23	0.23		0.67	0.67		0.67
v/c Ratio	0.01	0.12		0.16	0.04		0.50
Control Delay	0.0	14.2		5.7	1.7		8.1
Queue Delay	0.0	0.0		0.0	0.0		0.0
Total Delay	0.0	14.2		5.7	1.7		8.1
LOS	A	B		A	A		A
Approach Delay		14.2		5.2			8.1
Approach LOS		B		A			A
Queue Length 50th (m)	0.0	1.7		10.2	0.0		45.0
Queue Length 95th (m)	0.0	m8.3		15.2	3.3		58.6
Internal Link Dist (m)		136.0		20.6			158.1
Turn Bay Length (m)							
Base Capacity (vph)	481	406		2007	1079		2230
Starvation Cap Reductn	0	0		0	0		0
Spillback Cap Reductn	0	0		0	0		0
Storage Cap Reductn	0	0		0	0		0
Reduced v/c Ratio	0.01	0.12		0.16	0.04		0.50
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90							
Offset: 0 (0\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green							
Natural Cycle: 50							
Control Type: Pretimed							
Maximum v/c Ratio: 0.50							
Intersection Signal Delay: 7.5				Intersection LOS: A			
Intersection Capacity Utilization 52.3\%				ICU Level of Service A			
Analysis Period (min) 15							

m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 3: Nantucket \& Mall/Sportsplex

	4	\rightarrow	\cdots	7		4	4	4	p		$\frac{1}{7}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			「			T		44	T		中t	
Trafic Volume (veh/h)	0	0	0	0	0	0	0	348	,	0	911	36
Future Volume (Veh/h)	0	0	0	0	0	0	0	348	0	0	911	36
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			-5\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	0	0	0	378	0	0	990	39
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)								53			45	
pX, platoon unblocked	0.87	0.87	0.85	0.87	0.87	0.96	0.85			0.96		
vC , conflicting volume	1198	1388	514	873	1407	189	1029			378		
VC 1 , stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	739	957	78	365	979	84	683			280		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	100	100	100	100	100	100	100			100		
cM capacity (veh/h)	265	223	822	492	216	924	771			1234		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2					
Volume Total	0	0	189	189	0	660	369					
Volume Left	0	0	0	0	0	0	0					
Volume Right	0	0	0	0	0	0	39					
cSH	1700	1700	1700	1700	1700	1700	1700					
Volume to Capacity	0.04	0.05	0.11	0.11	0.02	0.39	0.22					
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Lane LOS	A	A										
Approach Delay (s)	0.0	0.0	0.0			0.0						
Approach LOS	A	A										
Intersection Summary												
Average Delay			0.0									
Intersection Capacity Utilization			29.7\%		CU Level of	Service			A			
Analysis Period (min)			15									

| | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

	\rangle		7	\checkmark			4	\dagger	p		$\frac{1}{\dagger}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			「			「		44	「		4t	
Traffic Volume（veh／h）	0	0	0	0	0		0	348	0	0	911	36
Future Volume（Veh／h）	0	0	0	0	0	0	0	357	0	0	934	37
Sign Control		Stop			Stop			Free			Free	
Grade		0\％			0\％			0\％			－5\％	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate（vph）	0	0	0	0	0	0	0	388	0	0	1015	40
Pedestrians												
Lane Width（m）												
Walking Speed（m／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（m）								53			45	
pX，platoon unblocked	0.86	0.86	0.84	0.86	0.86	0.96	0.84			0.96		
vC ，conflicting volume	1229	1423	528	896	1443	194	1055			388		
vC 1 ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	755	980	73	369	1003	86	698			287		
tC，single（s）	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
$\mathrm{tC}, 2$ stage（s）												
tF（s）	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \％	100	100	100	100	100	100	100			100		
cM capacity（veh／h）	257	215	822	486	208	921	756			1225		
Direction，Lane \＃	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2					
Volume Total	0	0	194	194	0	677	378					
Volume Left	0	0	0	0	0	0	0					
Volume Right	0	0	0	0	0	0	40					
CSH	1700	1700	1700	1700	1700	1700	1700					
Volume to Capacity	0.00	0.00	0.11	0.11	0.00	0.40	0.22					
Queue Length 95th（m）	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Control Delay（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Lane LOS	A	A										
Approach Delay（s）	0.0	0.0	0.0			0.0						
Approach LOS	A	A										
Intersection Summary												
Average Delay			0.0									
Intersection Capacity Utilization			29．7\％		Level	rvice			A			
Analysis Period（min）			15									

m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 1: Nantucket/Maple \& Victoria

Lane Group	EBR	WBT	NBL	NBT	NBR	SBL	SBT
Lane Configurations	7	\&		¢ ${ }^{\text {¢ }}$	7		* ${ }^{\text {d }}$
Traffic Volume (vph)	5	4	24	280	44	20	939
Future Volume (vph)	5	4	25	326	47	21	963
Lane Group Flow (vph)	5	50	0	381	51	0	1135
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA
Protected Phases		8		2			6
Permitted Phases	4		2		2	6	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	25.0	25.0	65.0	65.0	65.0	65.0	65.0
Total Split (\%)	27.8\%	27.8\%	72.2\%	72.2\%	72.2\%	72.2\%	72.2\%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0
Total Lost Time (s)	4.5	4.5		4.5	4.5		4.5
Lead/Lag							
Lead-Lag Optimize?							
Act Effct Green (s)	20.5	20.5		60.5	60.5		60.5
Actuated g/C Ratio	0.23	0.23		0.67	0.67		0.67
v/c Ratio	0.01	0.12		0.19	0.05		0.51
Control Delay	0.0	13.8		5.8	1.6		8.2
Queue Delay	0.0	0.0		0.0	0.0		0.0
Total Delay	0.0	13.8		5.8	1.6		8.2
LOS	A	B		A	A		A
Approach Delay		13.8		5.3			8.2
Approach LOS		B		A			A
Queue Length 50th (m)	0.0	0.8		12.0	0.0		46.7
Queue Length 95th (m)	0.0	m8.3		17.5	3.4		60.8
Internal Link Dist (m)		136.0		20.6			158.1
Turn Bay Length (m)							
Base Capacity (vph)	475	407		2012	1080		2227
Starvation Cap Reductn	0	0		0	0		0
Spillback Cap Reductn	0	0		0	0		0
Storage Cap Reductn	0	0		0	0		0
Reduced v/c Ratio	0.01	0.12		0.19	0.05		0.51
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90							
Offset: 0 (0\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green							
Natural Cycle: 50							
Control Type: Pretimed							
Maximum v/c Ratio: 0.51							
Intersection Signal Delay: 7.6				Intersection LOS: A			
Intersection Capacity Utilization 52.3\%				ICU Level of Service A			
Analysis Period (min) 15							

m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 3: Nantucket \& Mall/Sportsplex

| | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

	\rangle		\leftarrow	＊	
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Configurations	\％	性	性	${ }^{7}$	「
Traffic Volume（vph）	362	687	671	70	172
Future Volume（vph）	362	687	671	70	172
Lane Group Flow（vph）	393	747	796	76	187
Turn Type	pm＋pt	NA	NA	Prot	Perm
Protected Phases	7	4	8	6	
Permitted Phases	4				6
Detector Phase	7	4	8	6	6
Switch Phase					
Minimum Initial（s）	5.0	5.0	5.0	5.0	5.0
Minimum Split（s）	9.5	22.5	22.5	22.5	22.5
Total Split（s）	15.0	37.5	22.5	22.5	22.5
Total Split（\％）	25．0\％	62．5\％	37．5\％	37．5\％	37．5\％
Yellow Time（s）	3.5	3.5	3.5	3.5	3.5
All－Red Time（s）	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	4.5	4.5	4.5	4.5	4.5
Lead／Lag	Lead		Lag		
Lead－Lag Optimize？	Yes		Yes		
Recall Mode	None	None	None	Max	Max
Act Efft Green（s）	31.8	31.8	16.8	18.0	18.0
Actuated g／C Ratio	0.54	0.54	0.29	0.31	0.31
v／c Ratio	0.89	0.39	0.79	0.14	0.30
Control Delay	37.0	8.6	25.6	16.2	4.6
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	37.0	8.6	25.6	16.2	4.6
LOS	D	A	C	B	A
Approach Delay		18.4	25.6	8.0	
Approach LOS		B	C	A	
Queue Length 50th（ m ）	26.4	23.3	42.4	6.4	0.0
Queue Length 95th（ m ）	\＃73．5	33.6	61.3	14.9	12.1
Internal Link Dist（ m ）		153.3	86.2	122.6	
Turn Bay Length（ m ）					80.0
Base Capacity（vph）	443	1987	1081	542	614
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v／c Ratio	0.89	0.38	0.74	0.14	0.30
Intersection Summary					
Cycle Length： 60					
Actuated Cycle Length： 58.8					
Natural Cycle： 60					
Control Type：Actuated－Uncoordinated					
Maximum v／c Ratio： 0.89					
Intersection Signal Delay： 19.8 Intection Capacity Utiization 56．0\％					rsection LOS：B
					Level of Service B
Analysis Period（min） 15					
\＃95th percentile volume exceeds capacity，queue may be longer．Queue shown is maximum after two cycles．					

Splits and Phases：10：Wyse \＆Thistle

	\rangle		7	7			4	4	p		$\frac{1}{\dagger}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			「			「		44	「		4t	
Traffic Volume（veh／h）	0	0	30	0	0		0	764	0	0	448	20
Future Volume（Veh／h）	0	0	30	0	0	0	0	764	0	0	448	20
Sign Control		Stop			Stop			Free			Free	
Grade		0\％			0\％			0\％			－5\％	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate（vph）	0	0	33	0	0	0	0	830	0	0	487	22
Pedestrians												
Lane Width（m）												
Walking Speed（m／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（m）								53			45	
pX，platoon unblocked	0.94	0.94	0.94	0.94	0.94	0.91	0.94			0.91		
vC ，conflicting volume	913	1328	254	1106	1339	415	509			830		
vC 1 ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	508	948	85	713	960	170	355			624		
tC，single（s）	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
$\mathrm{tC}, 2$ stage（s）												
tF（s）	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \％	100	100	96	100	100	100	100			100		
cM capacity（veh／h）	422	244	901	289	240	771	1130			870		
Direction，Lane \＃	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2					
Volume Total	33	0	415	415	0	325	184					
Volume Left	0	0	0	0	0	0	0					
Volume Right	33	0	0	0	0	0	22					
CSH	901	1700	1700	1700	1700	1700	1700					
Volume to Capacity	0.04	0.05	0.24	0.24	0.02	0.19	0.11					
Queue Length 95th（m）	0.9	0.0	0.0	0.0	0.0	0.0	0.0					
Control Delay（s）	9.1	0.0	0.0	0.0	0.0	0.0	0.0					
Lane LOS	A	A										
Approach Delay（s）	9.1	0.0	0.0			0.0						
Approach LOS	A	A										
Intersection Summary												
Average Delay			0.2									
Intersection Capacity Utilization			24．5\％		Level	rvice			A			
Analysis Period（min）			15									

2024 Background Traffic Only

	*				
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Configurations	${ }^{*}$	44	中 ${ }^{\text {a }}$	${ }^{1}$	F
Traffic Volume (vph)	362	687	671	70	172
Future Volume (vph)	371	704	688	72	176
Lane Group Flow (vph)	393	747	796	76	187
Turn Type	pm+pt	NA	NA	Prot	Perm
Protected Phases	7	4	8	6	
Permitted Phases	4				6
Detector Phase	7	4	8	6	6
Switch Phase					
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.5	22.5	22.5	22.5	22.5
Total Split (s)	15.0	37.5	22.5	22.5	22.5
Total Split (\%)	25.0\%	62.5\%	37.5\%	37.5\%	37.5\%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lead		Lag		
Lead-Lag Optimize?	Yes		Yes		
Recall Mode	None	None	None	Max	Max
Act Effct Green (s)	31.8	31.8	16.8	18.0	18.0
Actuated g/C Ratio	0.54	0.54	0.29	0.31	0.31
v/c Ratio	0.89	0.39	0.79	0.14	0.30
Control Delay	37.0	8.6	25.6	16.2	4.6
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	37.0	8.6	25.6	16.2	4.6
LOS	D	A	C	B	A
Approach Delay		18.4	25.6	8.0	
Approach LOS		B	C	A	
Queue Length 50th (m)	26.4	23.3	42.4	6.4	0.0
Queue Length 95th (m)	\#73.5	33.6	61.3	14.9	12.1
Internal Link Dist (m)		153.3	86.2	122.6	
Turn Bay Length (m)					80.0
Base Capacity (vph)	443	1987	1081	542	614
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.89	0.38	0.74	0.14	0.30
Intersection Summary					
Cycle Length: 60					
Actuated Cycle Length: 58.8					
Natural Cycle: 60					
Control Type: Actuated-Uncoordinated					
Maximum v/c Ratio: 0.89					
Intersection Signal Delay: 19.8					ersection
Intersection Capacity Utilization 56.0\%					Level of
Analysis Period (min) 15					
\# 95th percentile volume exceeds capacity, queue may be longer.					
Queue shown is maximum after two cycles.					

Splits and Phases: 10: Wyse \& Thistle

	\rangle		7	\checkmark			4	\dagger	p		$\frac{1}{\dagger}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			「			「		44	「		4t	
Traffic Volume（veh／h）	0	0	30	0	0		0	764	0	0	448	20
Future Volume（Veh／h）	0	0	31	0	0	0	0	783	0	0	459	21
Sign Control		Stop			Stop			Free			Free	
Grade		0\％			0\％			0\％			－5\％	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate（vph）	0	0	33	0	0	0	0	830	0	0	487	22
Pedestrians												
Lane Width（m）												
Walking Speed（m／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（m）								53			45	
pX，platoon unblocked	0.94	0.94	0.94	0.94	0.94	0.91	0.94			0.91		
vC ，conflicting volume	913	1328	254	1106	1339	415	509			830		
vC 1 ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	508	948	85	713	960	170	355			624		
tC，single（s）	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
$\mathrm{tC}, 2$ stage（s）												
tF（s）	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \％	100	100	96	100	100	100	100			100		
cM capacity（veh／h）	422	244	901	289	240	771	1130			870		
Direction，Lane \＃	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2					
Volume Total	33	0	415	415	0	325	184					
Volume Left	0	0	0	0	0	0	0					
Volume Right	33	0	0	0	0	0	22					
CSH	901	1700	1700	1700	1700	1700	1700					
Volume to Capacity	0.04	0.05	0.24	0.24	0.02	0.19	0.11					
Queue Length 95th（m）	0.9	0.0	0.0	0.0	0.0	0.0	0.0					
Control Delay（s）	9.1	0.0	0.0	0.0	0.0	0.0	0.0					
Lane LOS	A	A										
Approach Delay（s）	9.1	0.0	0.0			0.0						
Approach LOS	A	A										
Intersection Summary												
Average Delay			0.2									
Intersection Capacity Utilization			24．5\％		Level	rvice			A			
Analysis Period（min）			15									

2024 Background and Development

	4				
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Configurations	\%	44	中t	${ }^{*}$	7
Traffic Volume (vph)	362	687	671	70	172
Future Volume (vph)	371	704	694	79	182
Lane Group Flow (vph)	403	765	824	86	198
Turn Type	pm+pt	NA	NA	Prot	Perm
Protected Phases	7	4	8	6	
Permitted Phases	4				6
Detector Phase	7	4	8	6	6
Switch Phase					
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.5	22.5	22.5	22.5	22.5
Total Split (s)	15.0	37.5	22.5	22.5	22.5
Total Split (\%)	25.0\%	62.5\%	37.5\%	37.5\%	37.5\%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lead		Lag		
Lead-Lag Optimize?	Yes		Yes		
Recall Mode	None	None	None	Max	Max
Act Effct Green (s)	32.1	32.1	17.0	18.0	18.0
Actuated g/C Ratio	0.54	0.54	0.29	0.30	0.30
v/c Ratio	0.92	0.40	0.81	0.16	0.32
Control Delay	41.6	8.6	26.7	16.5	4.6
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	41.6	8.6	26.7	16.5	4.6
LOS	D	A	C	B	A
Approach Delay		20.0	26.7	8.2	
Approach LOS		B	C	A	
Queue Length 50th (m)	28.2	24.0	44.4	7.2	0.0
Queue Length 95th (m)	\#77.1	34.6	\#65.1	16.4	12.4
Internal Link Dist (m)		153.3	86.2	122.6	
Turn Bay Length (m)					80.0
Base Capacity (vph)	440	1978	1076	540	620
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.92	0.39	0.77	0.16	0.32
Intersection Summary					
Cycle Length: 60					
Actuated Cycle Length: 59.1					
Natural Cycle: 65					
Control Type: Actuated-Uncoordinated					
Maximum v/c Ratio: 0.92					
Intersection Signal Delay: 20.9					rsection
Intersection Capacity Utilization 56.0\%					Level of
Analysis Period (min) 15					
\# 95th percentile volume exceeds capacity, queue may be longer.					
Queue shown is maximum after two cycles.					

Splits and Phases: 10: Wyse \& Thistle

APPENDIX E

Alternate Driveway Evaluation

fathomstudio.ca
1 Starr Lane
Dartmouth, NS
B2Y 4V7
\qquad

Issued

March 23, 2020
Project Number
F: 19-041

Mr. Alex Dunphy
via: Email to dunphy.alex@gmail.com

Wyse Road Development - Alternate Driveway Locations

Dear Mr. Dunphy,

This letter was prepared in response to the request to evaluate alternate access points to the Wyse Road Development and specifically the feasibility of access driveways off Wyse Road and / or Nantucket Avenue. The development is located in the northeast corner of the intersection of Wyse Road with Nantucket Avenue and the Macdonald Bridge approach with overall traffic operations being addressed in a Transportation Impact Study prepared by Fathom Studio in November 2019.

The original proposed location for the development driveway was off the west entrance roadway to the Dartmouth Sportsplex coinciding with one of the two existing driveways at the north end of the site's parking lot that serviced the previous development. Recent decisions have indicated that the original driveway location is no longer a feasible option therefore alternate access points to the site's underground parking structure off Nantucket Avenue or Wyse Road were explored as shown in the figure below.

The original transportation impact study estimated that between 70 and 80 trips enter and exit the building during the peak hours of traffic (just over one trip per minute) and that the added traffic volumes have very little impact to operations on the adjacent road network. Operationally, we do not expect the alternate driveway locations to change these conclusions. The impacts and implications of each access option is discussed in greater detail on the following pages.
fathomstudio.ca 1 Starr Lane Dartmouth, NS B2Y 4V7

Driveway to Wyse Road

A driveway to Wyse Road would be located near the east end of the property approximately 40 meters east of the nearest Nantucket Avenue curb line and 45 meters west of the nearest curb line of the existing Wyse Road driveway to the Dartmouth Sportsplex.
At that location Wyse Road is 7-lanes wide consisting of:

- 2 eastbound through lanes;
- 1 eastbound added lane receiving traffic from the Macdonald Bridge right turn channelization;
- 2 westbound left turn lanes to the Macdonald Bridge;
- 1 westbound transit priority lane allowing buses to turn left onto the bridge; and,
- 1 westbound shared through / right turn lane with a channelized right turn to Nantucket Avenue.
The proposed driveway location is in relatively close proximity to the Nantucket/ Wyse Road intersection. Challenges created by the wide cross-section and diversity of lane uses suggest that this driveway be configured as a right-in, rightout (RIRO) access to the development's underground parkade. RIRO operations would require that all entering movements take place from the westbound curb lane of Wyse Road.

Vehicles approaching from east of the site (Downtown Dartmouth for example) will approach the driveway on Wyse Road with little inconvenience. Vehicles approaching from the south (Macdonald Bridge), west (Wyse Road, Victoria Road) and north (Thistle, Woodland Ave.) would be required to select routing that would allow them to access the westbound curb lane on Wyse Road. While this may increase travel distances slightly, there are numerous nearby options to gain access to the parkade entrance.

With respect to exiting movements, vehicles destined to the west and north would operate with little inconvenience. Vehicles destined to the south or east will be required to find routing options to support their trip which ultimately depends on their destination.

Other considerations that are relevant to a driveway on Wyse Road:

- The westbound through/right lane on Wyse Road has some of the lowest traffic volumes at the Wyse / Nantucket intersection and therefore entry and exit movements should be relatively easy to make;
- There is an existing driveway to the property at this location;
- Being close to the traffic signals at Wyse and Nantucket and on the upstream side, entry and exit movements will frequently (particularly during the AM peak hour) take place adjacent to vehicle queues in the double left turn lane and occasionally bus queues in the dedicated westbound bus lane;
- During off peak hours, it is expected that some vehicles may directly access the double left turn lanes onto the Bridge, and some could attempt to make a left turn exiting movement; and,
- Consideration should be given to appropriate signage and potentially a channelized island between the entry and exit lanes to deter left turn movements to and from the driveway.
fathomstudio.ca
1 Starr Lane
Dartmouth, NS
B2Y 4V7

The Nantucket Avenue driveway option would be located between Wyse Road and the existing western driveway to the Dartmouth Sportsplex. The distance between these two nearest curb lines is about 85 meters, which is similar to the Wyse Road spacing. It is anticipated that the driveway would be located approximately halfway between Wyse Road and the Sportsplex driveway, though exact positioning will need to be coordinated with the building design requirements.

Adjacent to this driveway, Nantucket Avenue is 5 lanes wide consisting of:

- 2 northbound through lanes with the median lane sharing a left turn movement into the Dartmouth Shopping Center and ESSO gas station;

- 1 right turn only lane that enters the Dartmouth Sportsplex driveway. North of the Sportsplex driveway, this lane transitions to a transit only lane that enters the Dartmouth Bridge Transit Terminal. Buses coming across the Macdonald Bridge have a signed dedicated lane to access this curb lane (though this lane is frequently used by regular vehicles) meaning drivers intending to turn right into the Sportsplex should make a lane change to the curb lane after clearing the Wyse Road intersection.
- 2 southbound through lanes to the Macdonald Bridge with the curb lane being shared as a channelized right turn movement to Wyse Road. Left turns are not permitted in the southbound direction.

Similar to the Wyse Road driveway alternative, lane configurations, vehicle movements and volumes suggest that the access be configured as a right-in, rightout (RIRO) driveway. One-way operations would require that all entering movements take place from the northbound curb lane of Nantucket Avenue.

Vehicles approaching from the south, east and west on Wyse Road can access the driveway with little inconvenience and vehicles approaching from the north would have to make minor route adjustments to Thistle Street or Boland Road to access northbound Nantucket to the entrance driveway. Exiting movements to the north are straightforward and movements to the east and west would have to use Victoria Road instead of Wyse Road but still remain relatively convenient. Movement to the Macdonald Bridge are more challenging requiring drivers to use alternate routing.

Other considerations that are relevant to an alternate driveway on Nantucket Road include:

- The northbound curb lane is already configured for right turns only;
- The driveway is close to the traffic signals at Wyse and Nantucket and on the downstream side meaning vehicles are still traveling relatively slowly, though cars will be part of a platoon once the northbound signals turn green at Wyse Road;
- There is unlikely to be significant congestion adjacent to the driveway as traffic is generally free flowing past the driveway. Queues from the pedestrian signals located immediately to the north generally occur in the two through lanes and right turning traffic is generally lower and not impeded by the signals;
fathomstudio.ca
1 Starr Lane
Dartmouth, NS
B2Y 4V7
- The driveway is adjacent to an area that is subject to some lane change activity (though limited weaving) and frequent bus traffic. The busiest periods adjacent to this driveway would be during the PM peak hour of traffic;
- During off peak hours, it is possible that some vehicles may attempt to make left turns to or from the driveway. These are considered undesirable and have safety implications therefore options such as extending the median on Nantucket Avenue past the driveway may be warranted; and,
- Consideration would have to be given to signage and potentially a channelized island between the entry and exit lanes to deter left turn movements to and from the driveway.

Conclusions and Discussions

Two alternative access option were identified in this letter including one on Wyse Road and one on Nantucket Avenue. Both options are feasible from an external traffic perspective as well as from an internal building design perspective. As both intersections operate in relative close proximity to the signalized intersection at Nantucket, Wyse and the Macdonald Bridge, the detailed design process for this project will need to specifically address geometric, operational and safety elements of the driveway intersections (including pedestrian crossings) to provide a safe and controlled access to the site.

It is important to remember that volumes to and from driveways for this development are very low, which helps reduce the potential impacts of any risk factors that may be present. While there may be minor inconveniences to some drivers due to the right-in, right-out restrictions, there are a wide variety of route options adjacent to the site to minimize any such inconveniences.

The area is highly commuter oriented with direct access to robust transit service and active transportation networks. It is expected that this development will be viewed positively by a higher percentage of residents due to the existing alternative modal opportunities. Furthermore, there are significant initiatives underway in HRM to further promote transit ridership and active transportation modes of travel. This development is exceptionally well positioned to take advantage of these initiatives and these collective opportunities appear to significantly outweigh any minor inconveniences that drivers of private passenger vehicles may experience due to the left turn restrictions at the driveway.
\qquad

Should you have any questions regarding the content of this letter, or require any additional information, please contact the undersigned at (902) 233-1152, or by email at Roger.Boychuk@FathomStudio.ca.

Yours sincerely,

Original Signed

Roger N. Boychuk, P. Eng.
Senior Transportation Engineer
Fathom Studio

