

Servant, Dunbrack, McKenzie & MacDonald Ltd. **NOVA SCOTIA LAND SURVEYORS & CONSULTING ENGINEERS**

36 Oland Crescent Phone (902) 455-1537 Bayers Lake Business Park Fax (902) 455-8479 sdmm.ca

Halifax, Nova Scotia B3S 1C6 Web RAYMOND A. LANDRY MASc., P.Eng., LEED Green Associate

CHRISTOPHER J. FORAN

GEOFFREY K. MacLEAN

P.Eng.

RACHAEL W. KYTE P.Eng., LEED Green Associate ALEXANDER W. PULSIFER

P.Eng.

MICHAEL S. TANNER

NSLS (Ret)

DANIEL S. GERARD P.Eng., NSLS

H. JAMES McINTOSH P.Eng., NSLS, CLS

KEVIN A. ROBB NSLS

BLAKE H. TRASK P.Eng., NSLS

ADAM J. PATTERSON P.Eng., NSLS

October 28, 2020

Halifax Water 450 Cowie Hill Road Halifax, NS

From: Ray Landry, MASc., P.Eng. File No. <u>1-9-35 (35576)</u>

Re: Beaverbank Apartment Buildings – 239-243 Beaverbank Road, Sackville

Sanitary Lateral Size Confirmation

Project Summary:

	Residential (Multi-Unit) Building A	Residential (Multi-Unit) Building B
Building	46 Units	46 Units
*From W.M. Fares Architects		

References:

1. Halifax Water (HW) Design & Supplementary Specifications, 2020 Edition, Section 4.2.2:

 $Q = [1.25 \times (a \times M)] + b$ Where;

Q = Sanitary sewer flow.

1.25 = Safety factor.

a = Average dry weather flow.

M = Peaking factor using Harmon Formula; M = 1 + [14 / (4 + P^{0.5})]

b = Long-term infiltration/inflow allowance.

P = *Population in thousands*

Residential Average Dry Weather Flow:

300 L/day per person

Multi-Unit Dwelling Population: 2.25 people per unit

Infiltration allowance:

0.28 L/hagross/s

2. Atlantic Canada Wastewater Guidelines Manual (AWG), 2006 Edition, Section 2.3.

Calculation Summary (Building A):

Population Estimate (P)

Reference:

P: HW Section 4.2.1 Residential (Multi-Unit): 2.25 people per unit

P = 2.25 people per unit x 46 Units

= 104 people

P = **104** people (or 0.104)

Dry Weather Flow (a)

Reference:

a: HW Section 4.2.2: Residential: 300 L/day per person

a: ACWG Section 2.3.4.3, Table 2.1: Commercial/Retail: 6 L/sq.m

a residential= 300 L/day per person x 104 people = 31,200 L/day (or 0.36 L/s)

Total a= **31,200 L/day (or 0.36 L/s)**

Infiltration (b)

Reference:

HW Section 4.2.2: Infiltration allowance: 0.28 L/hagross/s

Lot Area = $7,377 \text{ m}^2 = 0.738 \text{ ha}$

b: $0.28 \text{ L/ha}_{gross}/s \times 0.738 \text{ ha} = 0.21 \text{ L/s}$

Peaking Factor (M)

 $M = 1 + [14 / (4 + P^{0.5})]$

 $M = 1 + [14 / (4 + (0.104)^{0.5})] = 4.24$

Sanitary Sewer Flow (Q)

 $Q = [1.25 \times (a \times M)] + b$

 $Q = [1.25 \times (0.36 \text{ L/s} \times 4.24)] + 0.21 \text{ L/s}$ = 2.12 L/s

Sanitary Lateral Size Confirmation:

A 200 mm diameter PVC lateral at 2.00% slope has a capacity of 60.3 L/s. With Q = 2.12 L/s, the proposed lateral will have sufficient flow capacity. For additional information or discussion regarding these findings please contact the undersigned.

Calculation Summary (Building B):

Population Estimate (P)

Reference:

P: HW Section 4.2.1 Residential (Multi-Unit): 2.25 people per unit

P = 2.25 people per unit x 46 Units = 104 people

P = 104 people (or 0.104)

Dry Weather Flow (a)

Reference:

a: HW Section 4.2.2: Residential: 300 L/day per person

a: ACWG Section 2.3.4.3, Table 2.1: Commercial/Retail: 6 L/sq.m

a residential= 300 L/day per person x 104 people = 31,200 L/day (or 0.36 L/s)

Total a= **31,200 L/day (or 0.36 L/s)**

Infiltration (b)

Reference:

HW Section 4.2.2: Infiltration allowance: 0.28 L/hagross/s

Lot Area = $8,094 \text{ m}^2 = 0.809 \text{ ha}$

b: 0.28 L/hagross/s x 0.809 ha = 0.23 L/s

Peaking Factor (M)

 $M = 1 + [14 / (4 + P^{0.5})]$

 $M = 1 + [14 / (4 + (0.104)^{0.5})] = 4.24$

Sanitary Sewer Flow (Q)

 $Q = [1.25 \times (a \times M)] + b$

 $Q = [1.25 \times (0.36 \text{ L/s} \times 4.24)] + 0.23 \text{ L/s}$ = 2.14 L/s

Sanitary Lateral Size Confirmation:

A 200 mm diameter PVC lateral at 2.00% slope has a capacity of 60.3 L/s. With Q = 2.14 L/s, the proposed lateral will have sufficient flow capacity. For additional information or discussion regarding these findings please contact the undersigned. Regards,

Original Signed

Ray Landry, MASc., P.Eng.

Project Engineer

 $Z: \SDMM \35000-35999 \35550 \35576 \Design \Sanitary \35576 \ Sanitary \ Flow \ Confirmation. docx \ Support \ Su$