

3283920 Nova Scotia Limited

Level 2 Groundwater Assessment Lot B, Peggy's Cove Road, Upper Tantallon, NS

Report

Date: July 12, 2017

Ref. No: P-0012667-0-00-200

3283920 Nova Scotia Limited

Level 2 Groundwater Assessment Lot B, Peggy's Cove Road, Upper Tantallon, NS

Report | P-0012667-0-00-200

Prepared by:	
	Aven Cole, M.Sc.E., P.Eng. Project Manager, Environmental Engineering
Approved by:	
	Doreen Chenard, B.Sc. in Agr. Team Leader, Environmental Engineering

TABLE OF CONTENTS

1	INTR	ODUCTION	5
2	OBJI	ECTIVES	5
3	SCO	PE OF THE ASSESSMENT	5
4	SITE	DESCRIPTION	5
	4.1	FUTURE DEVELOPMENT	7
_		CRIPTION OF HYDROGEOLOGY	
5			
6	METI	HODOLOGY	
	6.1	WATER WELL SURVEY	8
	6.2	WELL INSTALLATION	9
	6.2.1	Test Wells	_
	6.2.2	Wetland Piezometer	9
	6.3	OFF-SITE OBSERVATION WELLS	9
	6.4	PUMP TESTING	10
	6.4.1	Step Testing	10
		Long Term Pump Testing	
7	RESI	JLTS	13
	7.1	WATER WELL SURVEY	13
	7.2	TEST WELL	14
	7.3	STEP TESTING	15
	7.4	LONG TERM PUMPING TEST	
	7.4.1 7.4.1	Pumping and Recovery Data	
	7.4.1	. •	
	7.4.1	· ·	
	7.4.1		
	7.4.1		
	7.4.1		
	7.4.1		
	7.4.1		
	7.4.1		
	7.4.2	Steady State Analysis	
	7.4.3	Non-Steady State Analysis	
	7.4.3		
	7.4.3		
			24

i

TABLE OF CONTENTS

	7.4.5	Safe Well Yield Calculations	25
	7.4.1	Recommended Flow Rate for Test Well	26
	7.5	INTERFERENCE	27
	7.5.1 7.5.2	Private Wells	
	7.6	CHEMISTRY	27
	7.6.1 7.6.2	Well 3 Well 4	
	7.6.3	Off-Site Wells	
	7.6.4		
	7.6.5	Piezometers	30
8	CON	CLUSIONS AND RECOMMENDATIONS	30
	8.1	WATER QUANTITY	30
	8.2	INTERFERENCE	31
	8.3	CHEMICAL QUALITY	31
	8.3.1	Treatment Options	32
	8.4	OTHER CONSIDERATIONS	33
9	LIMI	TATIONS	33
1(REFI	ERENCES	35
	 -		

TABLE OF CONTENTS

Tables	
Table 4-1. Summary of surrounding properties.	7
Table 6-1. Summary of step tests.	10
Table 6-2. Distance between each well	11
Table 6-3. Summary of Pumping Program	12
Table 6-4. Summary of Laboratory Analytical Program	13
Table 7-1. Summary of Well Details	14
Table 7-2. Summary of Step Test Data	15
Table 7-3. Summary of Long Term Testing	18
Table 7-4. Summary of Hydraulic Properties Based on Analytical Methods	25
Table 7-5. Twenty Year Safe Yields	26
Table 8-1. Treatment Options.	32
Figures.	
Figure 4-1. Site Location Map, Lot B, Peggy's Cove Road, Upper Tantallon, NS	6
Figure 7-1. Maximal Drawdown after 60 Minutes of Pumping, Lot B, Peggy's Cove Roa Tantallon, NS	
Figure 7-2. Well Efficiencies, Lot B, Peggy's Cove Road, Upper Tantallon, NS	16
Figure 7-3. Well Efficiencies, Lot B, Peggy's Cove Road, Upper Tantallon, NS	17

Appendices

Appendix 1	Plans
Appendix 2	Well Survey Results
Appendix 3	Well Logs
Appendix 4	Step Test Data
Appendix 5	Long Term Pump Test Plots
Appendix 6	Long Term Pump Test Data
Appendix 7	Analytical Results
Appendix 8	Laboratory Certificates

Property and Confidentiality

"This engineering document is the property of Englobe Corp. and, as such, is protected under Copyright Law. It can only be used for the purposes mentioned herein. Any reproduction or adaptation, whether partial or total, is strictly prohibited without having obtained Englobe's and its client's prior written authorization to do so.

Test results mentioned herein are only valid for the sample(s) stated in this report.

Englobe's subcontractors who may have accomplished work either on site or in laboratory are duly qualified as stated in our Quality Manual's procurement procedure. Should you require any further information, please contact your Project Manager."

REVISION AND PUBLICATION REGISTER								
Revision N° Date Modification And/Or Publication Details								
00	9-May-2016	Draft Report Issued						
01	31-May-2016	Final Report Issued						
02	12-Jul-2017	Final Report (Version 1) Issued						

1 INTRODUCTION

3283920 Nova Scotia Limited is in the process of developing a new mixed use development at Lot B on Peggy's Cove Road (Highway 333) in Upper Tantallon, NS. In support of the development of a water supply to service the new development, Englobe Corp. (Englobe) has been contracted to conduct a Level 2 Groundwater Assessment.

The purpose of the work was to provide a Level 2 Groundwater Assessment in accordance with the NSE Guidelines for Groundwater Assessments of Subdivisions Serviced by Private Wells (2011). A Level 1 Groundwater Assessment was previously prepared for the property. This report summarizes the findings of the groundwater assessment.

2 **OBJECTIVES**

The objective of the Level 2 Groundwater Assessment is to further characterize the local geology and hydrogeology at the site in accordance with the NSE Guidelines for Groundwater Assessments of Subdivisions Serviced by Private Wells (2011), in conjunction with application under general development agreement requirements for the site.

This assessment is not intended to provide a guarantee that wells at the proposed site will have an adequate supply of potable water; however, it is intended that based on the work to date, this report will address the pertinent water supply issues in the area.

3 SCOPE OF THE ASSESSMENT

All work has been conducted following generally accepted scientific and engineering practices to satisfy the following information requirements that have been indicated by NSE:

- Review existing information;
- Conduct a well survey of the area;
- Install test wells:
- Conduct pump testing;
- Monitor off-site potable water wells;
- Conduct water quality testing; and
- Offer conclusions and recommendations for water quantity or quality issues.

4 SITE DESCRIPTION

The current area of interest is comprised of one property that is located on the western side of Peggy's Cove Road, near the intersection with St. Margaret's Bay Road. The subject area

is approximately 3.48 hectares. A site location map is presented in Figure 4-1.

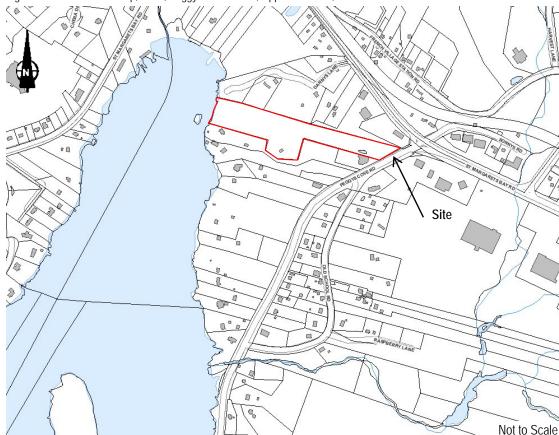


Figure 4-1. Site Location Map, Lot B, Peggy's Cove Road, Upper Tantallon, NS.

The subject area is predominately undeveloped, although there is an abandoned building present on the site. The Site is crossed by utility lines over an existing Nova Scotia Power (NSP) easement, and over private lines that supply Civic No. 13576 and the former building at the site. The topography is gently rolling, with the exception of a relatively steep slope downward from east to west towards St. Margaret's Bay. The eastern portion of the Site, from near Peggy's Cove Road, is relatively flat and occupied by a large wetland. There is an open water pond in the wetland, which we understand is a man-made feature. There were no observable inlets or outlets to the wetland, although the wetland extends offsite to the north and to the south. Based on our review and functional assessment of the wetland, discharge is via subsurface migration to the south and some channelized flow (at Civic No. 13570 Peggy's Cove Road) that ultimately extends beneath St. Margaret's Bay Road and migrates southward.

Access to the site is currently via a shared driveway with Civic No. 13576 and Civic No. 13570 Peggy's Cove Road. Recently, a temporary access road across the site was constructed for providing access for the potable water well drill rig. Neighboring properties

include a mix of low density residential and commercial properties, and are summarized in Table 4-1

Table 4-1. Summary of surrounding properties.

ADDRESS	LAND USE	ADJACENT
Lot B Peggy's Cove Road Vacant	Subject Site	-
13578 Peggy's Cove Road	Acadian Maple Products (commercial)	Yes
13576 Peggy's Cove Road	Residential dwelling	Yes
13570 Peggy's Cove Road	Rum Hollow Bed and Breakfast (residential)	Yes
13560 Peggy's Cove Road	Vacant, tree covered	No
13595 Peggy's Cove Road	Irving Service Station and commercial development	No
13589 Peggy's Cove Road	Commercial development	No
13548 Peggy's Cove Road	Residential dwelling	No
13544 Peggy's Cove Road	Residential dwelling	No
38 Danny's Lane	Residential dwelling	Yes
92 Danny's Lane	Residential dwelling	Yes
5302 St. Margaret's Bay Road	Residential dwelling	No
5298 St. Margaret's Bay Road	Residential dwelling	No
5280 St. Margaret's Bay Road	Investments Inc. (commercial)	Yes
5250 St. Margaret's Bay Road	Tantallon Veterinary Hospital (commercial)	Yes

4.1 Future Development

A concept plan has been prepared, but not yet finalized, and a preliminary copy is provided in Appendix 1. The concept plan will be finalized in consultation with HRM during the Development Agreement process. In general, the development will consist of a detached 14,000 sq.ft. commercial office building (Building C) adjacent to Peggy's Cove Road, two multi-unit 3.5 storey residential buildings (46 units; Building A and 48 units; Building B) in the center of the site and several groups of townhouse residences. The buildings will be serviced with roadways and parking areas.

The subject site along Peggy's Cove Road is located in an area that does not currently have central servicing for water and sewer. The servicing concept plan for the development is centrally supplied water (from drilled potable water wells and central storage) for the residential building and one commercial building, and a standalone sewage treatment plant (STP) to service the entire development.

The exact water distribution layout and central storage and treatment location has not yet been finalized. Buried piping will distribute water to and transport water from the building structure(s). Currently, it is anticipated that some of the test wells will be converted into production wells.

The proposed STP location is on the western side of the site, and the effluent discharge will drain towards St. Margaret's Bay. All STP design and effluent discharge will satisfy NSE requirements. The proposed STP location and the current location of the test wells satisfy the minimum setback requirements.

It is anticipated that all of the water and sewerage features will be buried with equipment accessed through hatches in buried chambers of tanks.

The development will be phased, with Building A and C comprising Phase 1. Phase 2 will consist of Building B and the subsequent residential townhouse units; additional detailed assessment will be carried out prior to design of Phase 2.11

5 **DESCRIPTION OF HYDROGEOLOGY**

The hydrogeology of the site is fully described in the Level 1 Hydrogeological Assessment. As described in the WSP report "the study site is located in the "plutonic" bedrock groundwater region and the "Glaciolacustrine/Till Plains/Colluvial" surficial groundwater region. Based on nearby wells, it is expected that the surficial geology is too thin to provide adequate groundwater for the development. Therefore, groundwater supply wells for this development are expected to be completed in the underlying plutonic bedrock.

Groundwater wells in the plutonic groundwater region typically produce lower yields than sedimentary, carbonate/evaporate and volcanic regions due to the rocks inability to store and transmit large amounts of water through the rock itself, instead water must move through fractures in the rock. The quantity and connectivity of fracturing varies significantly, which has an impact on their ability to supply groundwater. The average yield from wells drilled in the plutonic groundwater region is 22.3 Lpm."

The site is located in the Granite Hydrostatic Unit (HU), and although generally in the area, surficial geology in the area is a thin veneer over bedrock, at the immediate site, there are approximately 12m of glacial overburden (in select areas). Thicker deposits of saturated glacial deposits can serve to provide small quantities of water for residential and small scale commercial/industrial land uses. The thicker deposits are also sources of recharge to underlying less productive bedrock units.

6 **METHODOLOGY**

6.1 Water Well Survey

The well survey was carried out following the Level 1 report, and consisted of further review of the information on the Nova Scotia Well Log Database. Based on review of the local topography and drainage systems, the well survey was conducted within approximately 500m of the site. Thirteen dwellings or commercial businesses were identified, although, as

discussed in the Level 1 report, there are very few well logs available since it appears that well coordinates were incorrectly recorded (or not recorded) in the database.

For the immediately adjacent properties, only one Well Log was located.

The well survey consisted of an interview and questionnaire with home owners and business owners within approximately 500m of the site regarding the quality and quantity of their potable water, and any recent changes.

6.2 Well Installation

6.2.1 Test Wells

Between December 11 and 16, 2015, four Test Wells were installed on the property by Bluenose Well Drilling Ltd. All permitting and well construction supervision was supervised by Englobe. Chip samples were collected at 3-metre intervals and are stored at Englobe in Dartmouth, NS. The Test Wells are identified on Figure 2 in Appendix 1.

The wells were situated to satisfy minimum set-back requirements from property lines, the proposed onsite STP location and the location of adjacent septic treatment facilities. Proposed building and roadway locations were also considered, so that the test wells could be converted to production wells, should sufficient water yields be realized.

6.2.2 Wetland Piezometer

On December 11, 2015, Englobe personnel manually installed one piezometer in the wetland located in the eastern portion of the site to evaluate the potential for migration of shallow surface water via fractures into the local aquifer.

The piezometer location is identified as P-1, and is presented on Figure 2 (Appendix 1). The piezometer consisted of a manual borehole advanced with a hand auger to practical refusal (likely on a boulder). The piezometer was constructed of 25mm outside diameter (OD) polyvinyl chloride (PVC) threaded Schedule 20 slot screen and solid riser. The screened sections of the piezometer extended the entire depth of the borehole. The location was marked in the field for any future field programs and its position acquired by the project surveyor. A data logger was installed in the piezometer on January 16, 2016 in advance of the pump testing program. Pre-pump test water samples were also collected.

6.3 Off-site Observation Wells

On January 16, 2016, Aquaterra Resources Services Limited (Aquaterra) under the direction of Englobe personnel installed data loggers in the private (drilled) potable water wells at 38 Danny's Lane (PW1), 13578 Peggy's Cove Road (PW2), 13576 Peggy's Cove Road (PW3) and 13544 Peggy's Cove Road (PW4). The data loggers captured water levels in the off-site wells during the step tests and the long term pump tests. The Off-Site Observation Wells are identified on Figure 2 in Appendix 1.

Pre-pump test water samples were collected for general chemistry and total metals analyses. Pre-pump test water samples were also collected from the drilled potable water well at 13548 Peggy's Cove Road (PW5) for general chemistry and total metals analyses, and at the dug potable water well at 13570 Peggy's Cove Road (DW1) for total and *E.coli* coliforms, general chemistry and total metals analyses.

6.4 **Pump Testing**

6.4.1 **Step Testing**

Based on the estimated yields determined during drilling, step tests were conducted at each of the Test Wells. The step testing was carried out by Aquaterra between January 26 and February 1, 2016 under the supervision of Englobe. The purpose of step testing is to provide basic information on pumping wells and aquifer hydraulic characteristics. The main purpose is to determine well performance with increasing flow rates, which is a prerequisite to long term constant flow rate pumping tests.

During the step tests, each step lasted one hour at increasing flow rates. One hour of recovery measurements followed the final step at each well. Only three steps (instead of four) were conducted at the wells since drawdown increased significantly during the third step. Flow was measured using a flow meter, water levels were collected manually and with dataloggers to record drawdown information. A barologger was utilized to collect pressure and temperature data during the step test. A summary of the step tests is provided in Table 6-1.

Table 6-1. Summary of step tests.

DATE	WELL 1 (igpm) 27-Jan-2016	WELL 2 (igpm) 26-Jan-2016	WELL 3 (igpm) 1-Feb-2016	WELL 4 (igpm) 28-Jan-2016
Step 1	1.9 (8.6 Lpm)	1.1 (4.5 Lpm)	3.9 (18 Lpm)	3.1 (14 Lpm)
Step 2	4.2 (19.1 Lpm)	2 (9.1 Lpm)	8.1 (37 Lpm)	6 (27 Lpm)
Step 3	4.6 (20.9 Lpm)	4 (4.5 Lpm)	11.5 (52 Lpm)*	9 (41 Lpm)
Recovery	60 minutes	60 minutes	60 minutes	60 minutes

Note: * Step 3 terminated after 25min because water levels were approaching the pump depth

As noted above, dataloggers recorded drawdown in four observation wells at neighbouring properties to monitor interference between the pumping well and these private water supply wells. A datalogger also recorded water levels in the wetland on the property.

Distances between the various wells and the piezometer are summarized in Table 6-2.

Table 6-2. Distance between each well.

Distance (m)	Well 1	Well 2	Well 3	Well 4	Ι4	PW1 38 Danny's Lane	PW2 13578 Peggy's Cove Rd	PW3 13576 Peggy's Cove Rd	PW4 13546 Peggy's Cove Rd
Well 1									
Well 2	87.6								
Well 3	153.8	74.4							
Well 4	106.6	63.5	77.4						
P1	216.7	130.7	63.3	126.4					
PW1 38 Danny's Lane	156.9	125.9	116.5	62.4	142.0				
PW2 13578 Peggy's Cove Rd	306.9	219.0	155.1	227.5	101.9	242.1			
PW3 13576 Peggy's Cove Rd	136.2	224.3	290.8	234.7	352.0	269.4	445.0		
PW4 13546 Peggy's Cove Rd	87.9	123.0	185.9	173.8	247.4	232.9	318.8	158.8	

6.4.2 Long Term Pump Testing

Based on the results of the step tests, a long term 72-hour pumping test was designed to assess the effect of pumping at Wells 3 and 4 simultaneously. Well 1 and 2 were considered more appropriate to use as observation wells, so no long term pumping was conducted at these locations during this program.

The long term pumping test commenced on February 29, 2016 with pumping at Wells 3 and 4 at the rates presented in Table 6-3. Both wells were pumped continuously for 72 hours. Following the pumping, both wells were allowed to recover for approximately 24 hours. Table 6-3 summarizes the details of the pump testing program.

Flow was measured using a flow meter and water levels were collected manually at Wells 3 and 4. Data loggers were also used to collect water levels at Well 3 and 4, although the datalogger in Well 4 was lost and efforts to recover it were not successful. Field conductivities, pH and temperatures were collected from the pump discharge through the long term test. A barologger was utilized to collect pressure and temperature data during the long term pump test.

Table 6-3. Summary of Pumping Program.

Location	10:00am February 29, 2016 (t = 0 minutes)	10:00am March 1, 2016 (t = 1440 minutes)	10:00am March 2, 2016 (t = 2880 minutes)	10:00am March 3, 2016 (t = 4320 minutes)	10:00am March 4, 2016 (t = 5760 minutes)
Well 1	Observation	Observation	Observation	Observation	Observation
Well 2	Observation	Observation	Observation	Observation	Observation
Well 3 (7.0 to 7.3 igpm)	Pumping	Pumping	Pumping	Pumping	Recovery
Well 4 (at 5.3 igpm)	Pumping	Pumping	Pumping	Pumping	Recovery
P-1	Observation	Observation	Observation	Observation	Observation
PW1 38 Danny's Lane	Observation	Observation	Observation	Observation	Observation
PW2 13578 Peggy's Cove Road	Observation	Observation	Observation	Observation	Observation
PW3 13576 Peggy's Cove Road	Observation	Observation	Observation	Observation	Observation
PW4 13546 Peggy's Cove Road	Observation	Observation	Observation	Observation	Observation

Dataloggers recorded drawdown in the observation wells onsite (Well 1 and Well 2) and neighbouring properties (PW1, PW2, PW3 and PW4) to monitor interference between the pumping well and these water wells. Dataloggers also recorded drawdown in one manually installed piezometer (P-1) that was located in the adjacent wetland to assess the potential for groundwater under the influence of surface water.

Water samples were collected from Well 3 and Well 4 during the long term pump test. A summary of the analytical testing conducted is provided in Table 6-4. Note, bromide, fluoride and VOC analyses were conducted at 72-hours. Samples from the pumping wells were collected from the pump discharge. Samples from the off-site observation wells were collected through dedicated disposable bailers, outside taps or kitchen taps, prior to any water treatment devices.

In accordance with laboratory sampling protocols, water samples were collected; specifically, we used 120 mL plastic containers for metals (preserved with nitric acid in the field), 200-mL plastic containers for general inorganic chemistry (including fluoride), and 100-mL amber glass bottles with sulfuric acid preservative for Total Organic Carbon (TOC). Water samples

collected for volatile organic compounds (VOCs) were placed in 40-mL glass vials with sodium bisulphate preservative. Water samples for total and *E.coli* coliforms were placed in 300-ml plastic containers with sodium thiosulphate preservative. No samples were filtered.

The water sample containers were immediately placed in ice-packed coolers and were transported to Maxxam Analytics laboratory in Bedford, Nova Scotia, for detailed chemical analysis as listed above and in Table 6-4.

Table 6-4. Summary of Laboratory Analytical Program.

		Total and E.coli coliforms	General Chemistry	Total Metals	Fluoride	Bromide	VOCs
WELL 3	36hr (1-Mar)	✓	✓	✓			
WELL 3	72hr (3-Mar)	✓	✓	✓	✓	✓	✓
MELL A	36hr (1-Mar)	✓	✓	✓			
WELL 4	72hr (3-Mar)	✓	✓	✓	✓	✓	✓
P-1	18-Jan-16		✓	✓			
P-1	3-Mar-16		✓	✓			
PW1	18-Jan-16		✓	✓			
PWI	4-Mar-16		✓	✓			
DWO	18-Jan-16		✓	✓			
PW2	4-Mar-16		✓	✓			
PW3	18-Jan-16		✓	✓			
PW3	4-Mar-16		✓	✓			
PW4	18-Jan-16		✓	✓			
PVV4	4-Mar-16		✓	✓			
DWE	18-Jan-16		✓	✓			
PW5	4-Mar-16		✓	✓			
DW1	18-Jan-16	✓	✓	✓			
DVVI	3-Mar-16		✓	✓			

7 **RESULTS**

7.1 Water Well Survey

As previously noted, information available from the Nova Scotia Well Log Database offered very little useful information for this immediate area. In general, the available Well Logs did not record civic or lot numbers, so it was difficult to correlate the Well Log to its location. Well Logs were located for only 11 of the 85 properties in the well survey area; the only adjacent properties for which well logs were found were 13578 Peggy's Cove Road and 38 Danny's Lane.

The information collected from the well logs and during the community survey indicates that there were no reported significant water quality or quantity issues in this area, other than at St. Lukes (on St. Margaret's Bay Road). Several of the properties reported arsenic issues and numerous properties had odour issues.

A summary of the Well Survey results and copies of the available Well Logs are provided in Appendix 2.

7.2 Test Well

The on-site well locations were selected with consideration for on-site sewage disposal, proposed building locations and for future usefulness as a potable water source. The well depths were determined by yield for use as a normal commercial well. The location of the test wells is shown on Figure 2 (Appendix 1), along with the off-site potable water wells utilized as observation points.

Generally, the wells encountered up to 13m of overburden material (glacial till characterized as silty sand and gravel) overlying granite bedrock. The bedrock was plutonic (granite). The upper layers of the granite contained mica and select zones had iron staining. The granite had various layers of red, grey, pink and white, with the deeper layers (90m) generally pink or white.

The wells were constructed with a drive shoe and a bentonite seal in the annular space around the drive shoe in order to protect the groundwater resource from surface water contamination. The wells were each capped with a standard cover.

The well specific details are summarized in Table 7-1. A copy of the well records is provided in Appendix 3.

Table 7-1. Summary of Well Details.

	WELL 1	WELL 2	WELL 3	WELL 4
Driller	Bluenose Well Drilling Ltd.	Bluenose Well Drilling Ltd.	Bluenose Well Drilling Ltd.	Bluenose Well Drilling Ltd.
Date:	December 14, 2015	December 10, 2015	December 16, 2015	December 15, 2015
Location:	N.: 4950093.6 E.: 5548601.2	N.: 4950079.23 E.: 5548687.91	N.: 4950086.74 E.: 5548755.94	N.: 4950141.84 E.: 5548698.63
Stratigraphic Log:	0 – 6.1m: sand and gravel 6.1 – 12.19 m: clay and sand 12.19 –17.07 m: broken granite 17.07 –129.54 m: granite	0 – 3.05 m: clay and boulders 3.05 – 12.19 m: clay, sand and gravel 12.19 –105.16 m: granite	0 – 7.92 m: sand, clay and boulders 7.92 – 11.58 m: granite 11.58 –12.19 m: gravel 12.19 –62.48 m: granite	0 – 13.11 m: sand, silt and boulders 13.11 –92.96 m: granite

	WELL 1	WELL 2	WELL 3	WELL 4
Total Depth:	129.54 m	105.16 m	62.48 m	92.96 m
Casing:	0.15 m (6-inch dia) to 20.7 m	0.15 m (6-inch dia) to 15.2 m	0.15 m (6-inch dia) to 14.3 m	0.15 m (6-inch dia) to 15.8 m
Static Water Level:	7.85 mbgs	8.10 mbgs	4.19 mbgs	5.15 mbgs
Estimated Yield (drillers):	5.5 igpm	5 igpm	12 igpm	12 igpm
Water Bearing Fractures:	73.15 mbgs 117.35 mbgs 124.05 mbgs	94.49 mbgs	44.81 mbgs 50.29 mbgs 51.82 mbgs	27.43 mbgs 54.86 mbgs 67.06 mbgs 73.15 mbgs 86.87 mbgs
Test Pump:	Webtrol 1 horsepower, 18 usgpm series	Webtrol 1 horsepower, 18 usgpm series	Webtrol 1 horsepower, 18 usgpm series	Goulds 1 horsepower, 5 usgpm series
Pump Setting	91 mbgs	91 mbgs	55 mbgs	90 mbgs

Note: mbgs - meters below ground surface

7.3 **Step Testing**

Step tests provide basic information on aquifer characteristics. Their main purposes are to determine well performance, and the hydraulic behavior of a well with increasing pumping rates. They are a prerequisite to constant rate pumping tests. The step tests were performed by Aquaterra.

The data collected during the Step Test is summarized below. A full copy of the data is provided in Appendix 4.

Table 7-2. Summary of Step Test Data

WELL ID	B(t) ¹	C ²	Q _{MIN} (igpm)	Q _{MAX} (igpm)	Q _{REC} (ipgm)
Well 1	0.3637	0.0652	2.0	2.5	1.7
Well 2	1.5392	0.0499	1.5	2.0	2.8
Well 3	0.5436	0.0077	6.0	8.0	7.0
Well 4	0.2661	0.0087	-	9.0	4.5

Notes:

1 – B(t)= aquifer loss coefficient

2 - C = well loss coefficient

The Step Test was comprised of three steps with increasing flow rates, to determine the optimal flow rate to be used during 72 hour pumping test. The recommended cumulative

pumping rate is 16 igpm for the entire pump test (72 hours). Based on the results, Well 3 appears to be the most productive well, followed by Well 4. The highest aquifer loss coefficient was present in Well 2 and Well 1 appears to have the greatest well loss coefficient.

Figure 7-1 depicts the maximum drawdown after 60 minutes of pumping. Well 1 and Well 2 have similar characteristics, and Well 3 and Well 4 have similar characteristics. At the recommended pumping rates the well efficiencies are between 60% and 70% for Well 2, Well 3 and Well 4. The well efficiency of Well 1 is the lowest around 40%. Well efficiencies are shown as red circles on Figure 7-2. It is anticipated that Well 1 and Well 2 will be discarded as a water supply wells due to its poor performance during the step test. The specific drawdown is presented in Figure 7-3. The slope of the lines is the well loss coefficient (C), and the axis intercept is the aquifer loss coefficient (B(t)).

Figure 7-1. Maximal Drawdown after 60 Minutes of Pumping, Lot B, Peggy's Cove Road, Upper Tantallon, NS.

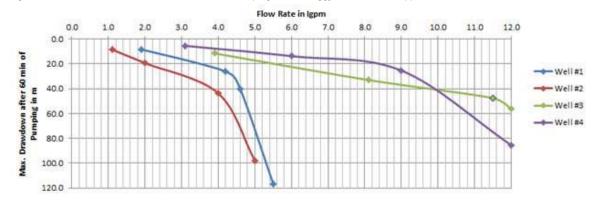
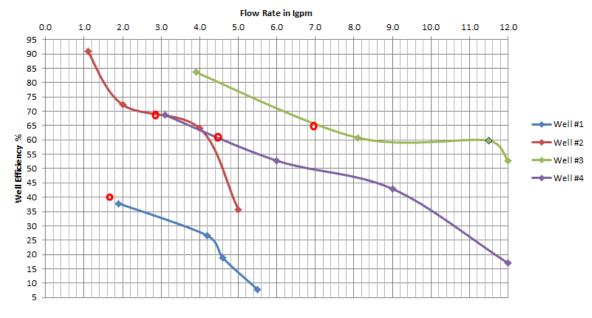



Figure 7-2. Well Efficiencies, Lot B, Peggy's Cove Road, Upper Tantallon, NS.

P-0012667-0-00-200

LEVEL 2 GROUNDWATER ASSESMENT - LOT B, HIGHWAY 333, UPPER TANTALLON, NS



Figure 7-3. Well Efficiencies, Lot B, Peggy's Cove Road, Upper Tantallon, NS.

As previously mentioned, based on the recommended pumping rates, Well 1 and Well 2 served better as observation wells while Well 3 and Well 4 would be pumped.

7.4 Long Term Pumping Test

Constant rate pumping tests are used to characterize an aquifer on a large scale, such as Transmissivity, Hydraulic Conductivity, and Specific Storage values, as well as identifying boundary conditions in the aquifer (recharge, and no-flow boundaries), which may affect long term performance of a pumping well. The information obtained from the analysis of a constant rate pumping test is useful to evaluate long term pumping rates, and the sustainability of a groundwater resource.

Based on the drawdown measured during the Step Test, the recommended flow rates at Well 3 and Well 4 for the long term pumping test were 7.0 igpm and 4.5 igpm, respectively. The average flow rate for the long term pumping test were set at 7.1 igpm (32.3 Lpm) for 72 hours for Well 3 and 5.2 igpm (23.6 Lpm) for 72 hours for Well 4.

The hydraulic parameters and the pumping capacities of Test Wells 3 and 4 were determined with the information gathered simultaneously from the long term pump test and during the recovery period.

In steady-state, the Dupuit (1944) equation, which was developed for homogeneous and isotropic porous confined aquifer, was used. Steady-state analysis is shown on Graph 101 presented in Appendix 5 and is discussed in Section 7.4.2. A full copy of the long term pump test data is provided in Appendix 6.

During the transition portion of the flow noted under pumping conditions, the data gathered from the wells was interpreted using the analytical method established by Theis method (1935) with the Jacob approximation (1946). This analytical method was developed for homogeneous and isotropic porous confined aquifer. The Jacob approximation was also utilized to interpret the data from the recovery portion of the test. Transient analysis for pumping and recovery are shown on the appended Graphs 102, 103, 104, and 105 presented in Appendix 5 and are discussed in Section 7.4.3.

The data collected during the 72 hour pumping test is provided in Appendix 5. A summary is provided in Table 7-3.

Based on the above information and as shown on Figure 101 (Appendix 5), four wells responded to the pumping of Well 3 and Well 4. The analysis of the pumping test was based on water levels in the pumping wells (Well 3 and Well 4) as well as the wells that showed a response to the pumping (PW1, PW2, Well 1 and Well 2). Although there was a measured change in water levels at PW3 and PW4, these changes are associated with typical residential pump use and cannot be associated with the effects of the pumping at Lot B, Peggy's Cove Road, Upper Tantallon.

Table 7-3. Summary of Long Term Testing.

	Well 1	Well 2	Well 3	Well 4	P-1	PW1 38 Danny's Lane	PW2 13578 Peggy's Cove Rd	PW3 13576 Peggy's Cove Rd	PW4 13546 Peggy's Cove Rd
Status:	Observation	Observation	Pumping	Pumping	Observation	Observation	Observation	Observation	Observation
Static Level (mbgs):	9.77 (29-Feb-16)	4.63 (29-Feb-16)	4.10 (29-Feb-16)	5.56 (29-Feb-16)	0.505 (16-Jan-16)	8.63 (26-Feb-16)	8.8 (27-Feb-16)	10.02 (26-Feb-16)	4.39 (26-Feb-16)
Depth of well (mbgs):	129.54	105.16	62.48	92.96	2.74	Unknown	91.44	Unknown	Unknown
Dynamic Water Level at 4320 minutes (mbgs):	13.45	15.97	41.92	27.44	1.16	14.18	12.25	10.63	4.47
Final Drawdown, m (after 72 hours):	3.22	10.97	39.3	21.57	0.345	5.31	3.25	0.17	-0.07
Maximum Observed Drawdown (m)	3.68	11.34	37.82	21.88	0.22	8.36**	27.04***	0.61	0.08*

Notes:

- 1 The set depth of the pumps in the neighbouring wells is unknown.
- 2 Negative drawdown in the neighbouring wells indicates that water levels were higher than water levels measured at the start of the test.
- 3 The negative value confirms that this well is not affected by the pumping of Wells 3 and 4; the values registered in PW3 and PW4 simply show the residential pump cycles at their locations.
- 4– The static water levels measured in the private wells show a certain degree of uncertainly due to private pumping during the pumping test.
- 5 * indicates an increase not a drawdown.
- 6 ** Maximum drawdown during test was not achieved at the 4320 minutes (termination of pump test). Based on data from datalogger pre pump test maximum drawdown at PW 1 was 2.74 m. During the test the maximum drawdown was achieved on March 2, 2016 at 10:50 with a drawdown of 8.36 m (8.49 mbgs).
- 7 *** Maximum drawdown during test was not achieved at the 4320 minutes (termination of pump test). Based on data from datalogger pre pump test maximum drawdown at PW2 was 13.00 m. During the test the maximum drawdown was achieved on March 1, 2016 at 14:50 with a drawdown of 27.04 m (17.02 mbgs).

7.4.1 Pumping and Recovery Data

7.4.1.1 Well 3 – Pumping Well

Pumping

Pumping of Well 3 began February 29, 2016 at 10:15 am. The interpretation of the drawdown graphs with respect to time indicates the water level in Well 3 progresses downwards rapidly during the first several minutes to hours of pumping and stabilizes after approximately 2,880 minutes of pumping, where a pseudo-permanent mode is attained. A water level of approximately 43.83 meters below top of casing (mbTOC) was measured at the termination of pumping. The pumping data indicates two (2) anomalies, occurring at 720 minutes and 1,080 minutes. The first anomaly shows a drop in water level to 43.86 mbgs, a drop of 4.56 m from the reading taken at 660 minutes. The water level recovered to 39.18 mbgs at the 840 minute reading where it slowly continued to drop. The cause of this anomaly is unknown. The cause of the second anomaly is attributed to the carburetor icing over during pumping causing the pumping to be sporadic. Pumping of Well 3 was terminated on March 3, 2016 at 10:15 am.

Recovery

Following the end of pumping of this well, a recovery of 38.85 m was measured on March 4, 2016, at 9:06 am. The original static water level measured on February 29, 2016 at 10:10 am was 4.10 mbgs with a final static water level measured on March 4, 2016 at 9:06 am was 4.98 mbgs. The final water level represents an 82% recovery to the original static water level prior to pumping. No data anomalies were observed during this period. The termination of Well 4 pumping is not discernable in the recovery data of Well 3.

7.4.1.2 Well 4 – Pumping Well

Pumping

As previously mentioned, while efforts were made to recover the datalogger in Well 4, they were unsuccessful. Therefore the interpretation of the drawdown in Well 4 is based on the manual measurements completed during the pumping test. Pumping of Well 4 commenced February 29, 2016 at 10:30 am. The interpretation of the drawdown graphs with respect to time indicates the water level in Well 4 progresses downwards rapidly during the first several minutes to hours of pumping. After that, the water level stabilizes after approximately 960 minutes. At the termination of the test, the water level was recorded at a depth of 27.44 mbTOC. The pumping data indicates one (1) anomaly, occurring at 1,080 minutes and lasting for 24 minutes. The cause of this anomaly is attributed to the carburetor icing over during pumping causing the pumping to terminate for 24 minutes.

Recovery

Following the end of pumping of this well, a recovery of 19.71 m was measured on March 3,

2016. The original static water level measured on February 29, 2016 at 10:30 am was 5.56 mbgs with a final static water level measured on March 4, 2016 at 9:30 am was 7.73 mbgs. The final water level represents a 72% recovery to the original static water level prior to pumping. No data anomalies were observed during this period. The termination of Well 3 pumping is not discernable in the recovery data of Well 4.

7.4.1.3 PW1 38 Danny's Lane – Observation Well

Pumping

PW1 located at 38 Danny's Lane, Upper Tantallon, showed a response to the pumping of Well 3 and 4. A maximum drawdown of 8.36 m was observed on March 2, 2016 at 10:50 am. The dataloggers were installed February 26, 2016 and a prepump test maximum drawdown of 2.47 m was observed on February 28, 2016 at 17:30. The amplitude of this variation between prepumping and during pumping maximum drawdowns is 5.89 m.

Recovery

The hydrograph (Figure 101, Appendix 5) shows that PW1 began to recharge prior to the termination of the pump test. The barometrically corrected water level at PW1 at the beginning of the pump test was measured at 20.60 mASL. The last measurement after the recovery period was 18.51 mASL, showing a difference of 2.09 m therefore achieving a 90% recovery of the original static.

The termination of pumping at Wells 3 and 4 was observed in PW 1.

7.4.1.4 PW2 13578 Peggy's Cove Road – Observation Well

Pumping

PW2 located at 13578, Upper Tantallon showed a minimal response to the pumping of Well 3 and 4. The data acquired from the datalogger prior to the commencement of pumping at Well 3 and Well 4 shows an average drawdown at this well of 13.04 m. A barometrically corrected water level of 18.20 mASL was recorded on February 27, 2016 showing the average static water level. While it is unclear what the extent of the drawdown at this well was as a result of the pumping test or due to on site pumping at 13578 Peggy's Cove Road, the maximum drawdown observed at PW2 during the pump test was 27.04 m. The maximum drawdown observed prior to the pump test was 13.04 m and was recorded using a datalogger on February 27, 2016 at 15:30. During pumping, typical recharge levels of PW2 were recorded at a barometrically corrected water level of 17.16 mASL, showing a drop in typical static water levels of approximately 1.04 m.

The pumping of Well 3 and Well 4 has a minimal influence (approximately 1.04 m decrease in static water levels) on PW2.

Recovery

At the termination of pumping at Well 3 and Well 4, the highest achieved barometrically

P-0012667-0-00-200

corrected recovery level was recorded at 17.83 mASL. The original barometrically corrected static water level recorded on February 27, 2016 at 8:00 am was 18.21 mASL. A 98% recovery was achieved in PW 2 after the 23 hour recovery period. A review of the data presented in Figure 101 (Appendix 5) shows an observable effect in PW2 after the termination of pumping. It must be noted that during the recovery period the pump was running at PW2 and shows a drawdown, however; this is not related to the pumping test.

7.4.1.5 Well 1 – Observation Well

Pumping

There was an observable effect of the pumping of Well 3 and Well 4 at Well 1. A barometrically corrected static water level of 12.37 mASL was recorded on February 29, 2016 prior to the pumping of Well 3 and Well 4. A barometrically corrected water level of 9.15 mASL was recorded at the termination of the 72 hour pumping. A maximum drawdown of 3.22 m was observed in this well during the pump test.

Recovery

At the termination of pumping at Well 3 and Well 4, the highest achieved barometrically corrected recovery level was recorded at 11.10 mASL. The original barometrically corrected static water level recorded on February 29, 2016 was 12.37 mASL. A 90% recovery was achieved in Well 1 after the 23 hour recovery period. A review of the data presented in Figure 101 (Appendix 5) shows an observable effect in Well 1 after the termination of pumping.

7.4.1.6 Well 2 – Observation Well

Pumping

There was an observable effect of the pumping of Well 3 and Well 4 at Well 2. A barometrically corrected static water level of 20.53 mASL was recorded on February 29, 2016 prior to the pumping of Well 3 and Well 4. A barometrically corrected water level of 11.63 mASL was recorded at the termination of the 72 hour pumping. A maximum drawdown of 8.91 m was observed in this well during the pump test.

Recovery

At the termination of pumping at Well 3 and Well 4, the highest achieved barometrically corrected recovery level was recorded at 20.20 mASL. The original barometrically corrected static water level recorded on February 29, 2016 was 20.53 mASL. A 98% recovery was achieved in Well 2 after the 23 hour recovery period. A review of the data presented in Figure 101 (Appendix 5) shows an observable effect in Well 2 after the termination of pumping.

7.4.1.7 PW3 13576 Peggy's Cove Road – Observation Well

Pumping

PW3 located at 13576 Peggy's Cove Road did not show a response to the pumping of Well 3

and 4. As previously mentioned, although there was a measured change in water levels at PW3 during the pumping of Well 3 and Well 4, these changes are associated with typical residential pump use and cannot be associated with the effects of the pumping at Lot B, Peggy's Cove Road, Upper Tantallon. A review of the tide levels (obtained from the Bedford Institute Station in Nova Scotia) and the datalogger data for PW3 shows that this well is being influenced by the tide and not by the pumping of Well 3 or Well 4.

There was no observable effect of pumping at Well 3 or Well 4 on this observation well.

Recovery

There was no observable effect of termination of pumping at Well 3 or 4.

7.4.1.8 PW4 13546 Peggy's Cove Road – Observation Well

Pumping

PW4 located at 13546 Peggy's Cove Road did not show a response to the pumping of Well 3 and Well 4. As previously mentioned, although there was a small measured change in water levels at PW4 during the pumping of Well 3 and Well 4, these changes are associated with typical residential pump use and cannot be associated with the effects of the pumping at Lot B, Peggy's Cove Road, Upper Tantallon.

There was no observable effect of pumping at Well 3 or Well 4 on this observation well.

Recovery

There was no observable effect of termination of pumping at Well 3 or Well 4.

7.4.1.9 P 1 – Observation Piezometer

Pumping

A piezometer was installed in the wetland located on the eastern portion of the site close to Peggy's Cove Road. The piezometer was advanced to a depth 2.74 m where it was assumed it hit a boulder. No observable changes were registered in the datalogger data during the pumping of Well 3 and Well 4. The piezometer is likely installed in a localized zone perched of perched water and is not directly connected to the underlying aguifer.

There was no observable effect of pumping at Well 3 or Well 4 on this observation piezometer.

Recovery

At 10:00 am March 3, 2016 the water level in the piezometer increased 0.76 m from 1.628 mbgs to 0.50 mbgs. Pumping at Well 3 and Well 4 ceased at 10:15 and 10:30 respectively. At 10:10 am the datalogger read a level of 1.16 mbgs indicating the water level had dropped. It is likely this is an anomaly and that this is not an effect of the pumping or recovery of Well 3 or Well 4 as this occurred before pumping had terminated.

7.4.2 **Steady State Analysis**

A steady state analysis was conducted on pumping test data to provide a preliminary estimate of the hydraulic properties of the aquifer.

The Dupuit equation for confined aquifers was used as a first approximation for the hydraulic properties of the aquifer. The Dupuit equation is described as follows:

$$S_{w} = \frac{Q_{w}}{2\pi T} Ln(r_{2}/r_{1})$$

Where:

 $\mathbf{Q_w} = \text{Pumping rate (m}^3/\text{sec)}$

 $s_w = Drawdown (m)$

T = Transmissivity (m²/sec), equal to K x B

K = Hydraulic conductivity of the aguifer **B** = Saturated fractured zone thickness in the bedrock, (m)

> $\mathbf{r_2}$ and $\mathbf{r_1}$ = distance pumping Well / observation well (m)

As previously mentioned the plot for the steady state analysis (Dupuit) is presented in Graph 101 included in Appendix 5.

For this analysis, as two wells were pumped at the same time (Well 3 and Well 4), an intermediate imaginary well between these two wells was considered and the pumping rate used is the sum of the pumping rate of the two wells. The distance from the pumping well used (r₁ and r₂) is the distance from the imaginary well. The observation wells used are Well 1 and Well 2.

The Dupuit equation is solved using steady state drawdown conditions. As a result, drawdown at 72 hours of pumping was used to solve the Dupuit equation, assuming that steady state conditions were reached at the end of the test.

The Transmissivity value estimated based on the Dupuit equation described above and the maximum drawdown at the end of the 72 hour pumping test is 2.2 x 10⁻⁵ m²/sec. Assuming that all fracture zones contributed water evenly (19.5 m thick) and that the competent bedrock (non-fractured zone) did not contribute any water, the average hydraulic conductivity value for the fractured zones is 1.1 x 10⁻⁶ m/sec.

7.4.3 **Non-Steady State Analysis**

7.4.3.1 Non-Steady State Analysis of Drawdown

Non-steady state analysis was conducted on the pumping test data for the pumping and the recovery period. The non-steady state analysis was based on the Theis method (1935) with the Jacob approximation (1946).

The Jacob approximation is described by the following equation:

$$T = \frac{2,3Q_w}{4\pi\Delta s}$$

Where:

 $\Delta s = Drawdown gap (m)$ $Q_w = Flow rate (m^3/sec)$

 $T = Transmissivity (m^2/sec)$, equal to K x B K = Hydraulic conductivity of the aquifer (m/sec)

B = Saturated fractured zone thickness in the bedrock, (m)

The plot for the Theis with the Jacob approximation is presented in Graphs 102 and 103 included in Appendix 5.

The Transmissivity value estimated based on the Theis method with the Jacob approximation described above is 8.4 x 10⁻⁶ m²/sec for Well 3 and 9.9 x 10⁻⁶ m²/sec for Well 4. An average of 9.1 x 10⁻⁶ m²/sec was calculated and assuming that all fracture zones contributed water evenly (19.5 m thick) and that the competent bedrock (non-fractured zone) did not contribute any water, the average hydraulic conductivity value for the fractured zones is 4.6 x 10⁻⁷ m/sec. The Storage Coefficient was not considered since it is only valid for porous aquifer and not for fracture aquifer.

7.4.3.2 Non-steady State Analysis of Recovery

The recovery of water levels following the end of pumping was analysed using the Theis recovery method (1935) with the Jacob approximation (1946). The equation used is the same as describes at section 7.4.3.1.

The analysis plot for the Theis Recovery method with the Jacob approximation is presented in Graphs 104 and 105 included in Appendix 5.

The Transmissivity value estimated based on the Theis Recovery method with the Jacob approximation (1946) described above is 1.4×10^{-5} m²/sec for Well 3 and 1.3×10^{-5} m²/sec for Well 4. An average of 1.35×10^{-5} m²/sec was calculated and assuming that all fracture zones contributed water evenly (19.5 m thick) and that the competent bedrock (non-fractured zone) did not contribute any water, the average hydraulic conductivity value for the fractured zones is 6.9×10^{-7} m/sec.

7.4.4 Summary of Hydraulic Properties

The hydraulic properties are provided using the three analytical method described in the previous Sections 7.4.12 and 7.4.3.1 and 7.4.3.2 are summarized in Table 7-4.

Note that the three methods provided Transmissivity values in the same order of magnitude. We recommend to using an average Transmissivity between the three methods where $T = 1.4 \times 10^{-5} \, \text{m}^2/\text{sec}$.

With aguifer thickness of 19.5 m, hydraulic conductivity is 7.1 x 10⁻⁷ m/sec.

Table 7-4. Summary of Hydraulic Properties Based on Analytical Methods.

		Steady State		Pumping test		Recovery method	
		Dupuit		Jacob (1935)		Theis (1935)	
Test	Monitoring	T	K	Т	K	Т	K
Test	/Pumping	(m²/sec)	(m/sec)	(m²/sec)	(m/sec)	(m²/sec)	(m/sec)
Well 3	Well 3			8.4 x 10 ⁻⁶	4.3 x 10 ⁻⁷	1.4 x 10 ⁻⁵	7.1 x 10 ⁻⁷
Well 4	Well 4			9.9 x 10 ⁻⁶	5. x 10 ⁻⁶	1.3 x 10 ⁻⁵	6.7 x 10 ⁻⁷
Well 3	Well 1 and	2.2 x 10 ⁻⁵	1.1 x 10 ⁻⁶				
and 4	Well 2						
Average		2.2 x 10 ⁻⁵	1.1 x 10 ⁻⁶	9.1 x 10 ⁻⁶	4.7 x 10 ⁻⁷	1.35 x 10 ⁻⁵	6.9 x 10 ⁻⁷

7.4.5 Safe Well Yield Calculations

The Twenty Year Safe Well Yield calculation is used to estimate the long-term safe pumping rate for a well, and can be calculated using the two following methods. The Safe Well Yield calculations assume continuous pumping for twenty years.

The first method is based on the Farvolden equation (Nova Scotia Environment, 2011), and is described as follows:

$$Q_{20} = 0.683TH_{A}S_{f}$$

Where:

 $\mathbf{Q}_{20} = 20 \text{ Year Safe pumping rate for the well } \mathbf{T} = \text{Transmissivity } (1.19 \text{ m}^2/\text{day})$ (m³/day)

 S_f = Safety Factor, 0.7 (no units) H_A = Available head (42.26 m)

According to the Farvolden equation, the estimated Twenty Year Safe Yield for Well 3 is 16.71 L/min (24.07 m³/day) assuming an available head above the pump, H_A, of 42.3 m based on an installed pump depth at 47 mBTOC, and a static water level at 4.7 mBTOC.

For Well 4, the estimated twenty year safe yield is 28.05 L/min (40.39 m³/day) assuming an available head above the pump, HA, of 71 m based on an installed pump depth at 74 m BTOC, and a static water level at 3 mBTOC.

The second method is based on the Van der Kamp and Maathuis equation (Nova Scotia Environment, 2011), and is described as follows:

$$Q_{20} = S_f H_A Q / (S_{100\,\mathrm{min}} + (S_{20\,yrs} - S_{100\,\mathrm{min}})_{theor})$$

Where:

 $\mathbf{Q}_{20} = 20 \text{ Year Safe pumping rate for the well } \mathbf{T} = \text{Transmissivity (1.19 m}^2/\text{day)}$ (m³/dav)

 S_f = Safety Factor, 0.7 (no units) H_A = Available head

Q = Pumping rate used during pumping test **S**_{100min} = Drawdown observed in well during the pumping test at 100 min

(\$20yrs-\$100min)theor = The theoretical drawdown in the well after 20 years of pumping minus the theoretical drawdown in the well at 100 minutes, based on Graphs 106 and 107 in Appendix 5.

According to the Van der Kamp and Maathuis equation, the estimated Twenty Year Safe Yield for Well 3 is 29.83 L/min (42.95 m³/day) assuming an available head above the pump, H_A, of 42.3 m based on an installed pump depth at 47 m BTOC, and a static water level at 4.7 mBTOC.

For Well 4, the estimated Twenty Year Safe Yield is 56.78 L/min (81.77 m³/day) assuming an available head above the pump, H_A, of 71 m based on an installed pump depth at 74 mBTOC, and a static water level at 3 mBTOC.

The calculated Twenty Year Safe Yields are summarized in Table 7-5.

	We	II 3	Well 4	
	m³/day	Lpm	m³/day	Lpm
Pump Depth	47m		74m	
Static Water Level	4.	7m	3m	
T (m ² /day)	1.2			
Available head (H _A)	42.3m		71	m
Farvolden	24.07 16.71		40.39	28.05
Van der Kamp and Maathuis	42.95	29.83	81.77	56.78

7.4.1 Recommended Flow Rate for Test Well

Long term pumping test data showed a pseudo steady state when Well 3 flow rate is 31.8 L/min (45.82 m³/day) and Well 4 flow rate is 20.46 L/min (29.45 m³/day). However, according to the Farvolden equation, the estimated Twenty Year Safe Yield for Well 3 is 16.71 L/min (24.07 m³/day) and is 28.05 L/min (40.39 m³/day) for Well 4.

We recommended a pumping rate of 16.71 L/min (24.07 m³/day) at Well 3, and a pumping rate of 20.46 (29.45 m³/day) at Well 4. This rate can be maintained on a daily basis for periods of 12 hours, allowing sufficient recovery time (12 hours) between each day. In the event that the well needs to be producing for a continuous 24 hours, we recommended that a full 24 hours of recovery be completed to allow the well to recover to static water levels. Additionally, we recommend that a low water level probe be installed inside the well above the submersible pump. This probe can be used as a safety to switch off the submersible pump in the event that water levels drop too low.

Water conservation practices should be practiced where possible. The well should also be equipped with a flow meter, prior to conversion into a production well.

There was no observed evidence that the bedrock fractures were hydraulically connected to surface water bodies (GUDI).

7.5 Interference

7.5.1 **Private Wells**

In general, the hydraulic interference phenomenon between the catchment zones is manifested when the influence radius is over-lapping under dynamic pumping conditions. The hydraulic interference is responsible for the drawdown augmentation on each well site that accesses the same aquifer table. The pumping flow can be depressed, especially when the hydraulic interference phenomenon is significant.

The radius of influence of pumping Wells 3 and 4 is approximately 210 m. An impact on the level of water is present inside this radius. A drawdown was measured on the private wells PW1 and PW2 during the long-term pumping test. The drawdown is very low and negligible in PW2. At PW1, the drawdown reached a maximum of 5.89 m. The information reviewed from the well log has shown that PW1 is drilled to a depth of 163 feet (below ground surface) and the depth of the pump is between 150 and 153 feet (below ground surface). The impact at PW1, when pumping Wells 3 and 4, is considered low compared to the available drawdown.

7.5.2 Surface Water

As previously mentioned, it appears the increase in water level in the mini piezometer (P-1) installed in the wetland was not affected by the pumping or termination at Well 3 or Well 4. An observable change was recorded in the datalogger installed in P-1, however; it appears this may be an anomaly as the increase of 0.76 m (0.50 mbgs) was recorded once before the levels had dropped down to 1.16 mbgs.

Well 3 and Well 4 appear to have no influence on the wetland based on the pump data.

7.6 **Chemistry**

All water analytical results have been tabulated in conjunction with the 2015 Canadian Drinking Water Quality Guidelines (CDWQG) and the Nova Scotia Environment (NSE) Tier 1 Environmental Quality Standards (EQS). A copy of the tabulated results is provided in Appendix 7 (Tables 1, 2 and 3). A copy of the laboratory Certificates of Analysis are also provided in Appendix 8.

7.6.1 Well 3

The Langelier Index indicates that the water has a tendency to have a low corrosive impact at both cold and hot temperatures.

A comparison to the CDWQG indicates water sampled from the well (both at 36 and 72 hours of pumping) had elevated manganese concentrations. Note this parameter only has an Aesthetic Objective (AO) under the CDWQG.

No E.coli or Total Coliforms were measured in any of the samples.

There was no evidence of salt water intrusion.

P-0012667-0-00-200

Fluoride satisfied the guidelines during the 72-hour testing.

No VOCs were detected in the water sample from the 72 hour interval.

The manganese concentration was elevated following continuous pumping; this elevated concentration is likely associated with the natural geology of the underlying plutonic bedrock. Typically, continuous pumping results in lower concentrations of this (and other) parameters.

Periods of pump cycling may lead to elevated iron and manganese concentrations in the well water. Elevated iron concentrations can cause coloring of the water during production, staining of plumbing, and a metallic taste. In certain cases, iron can also promote the growth of iron bacteria in water mains and service pipes. Elevated manganese concentrations can also cause staining of fixtures and metallic taste. A treatment system may be required to address excessive iron and manganese concentrations; however, these parameters are not health-related.

Little groundwater filtration occurs in a fractured bedrock aquifer, and groundwater velocities are relatively high in this type of aquifer due to the low void space. The absence of natural filtration, unlike in aquifers with porous materials (sands), causes fractured bedrock aquifers to be more vulnerable than aquifers with porous materials to potential contamination.

We recommend an ongoing groundwater testing program (yearly samples) to ensure that water quality maintains drinking water standards.

7.6.2 **Well 4**

The Langelier Index indicates that the water has a tendency to have a relatively low corrosive impact at both cold and hot temperatures.

A comparison to the CDWQG indicates water sampled from the well (both at 36 and 72 hours of pumping) had an elevated manganese concentration. Note this parameter only has an Aesthetic Objective (AO) under the CDWQG.

No *E.*coli Coliforms were measured in any of the samples. Total coliforms (2 CFU/100ml) were detected in the 36 hour test, although none were detected in the 72 hour test.

There was no evidence of salt water intrusion.

Fluoride satisfied the guidelines during the 72-hour testing.

No VOCs were detected in the water sample from the 72 hour interval.

The manganese concentration was elevated following continuous pumping; this elevated concentration is likely associated with the natural geology of the underlying plutonic bedrock. Typically, continuous pumping results in lower concentrations of this (and other) parameters.

Periods of pump cycling may lead to elevated iron and manganese concentrations in the well water. Elevated iron concentrations can cause coloring of the water during production, staining of plumbing, and a metallic taste. In certain cases, iron can also promote the growth

of iron bacteria in water mains and service pipes. Elevated manganese concentrations can also cause staining of fixtures and metallic taste. A treatment system may be required to address excessive iron and manganese concentrations; however, these parameters are not health-related.

Little groundwater filtration occurs in a fractured bedrock aquifer, and groundwater velocities are relatively high in this type of aquifer due to the low void space. The absence of natural filtration, unlike in aquifers with porous materials (sands), causes fractured bedrock aquifers to be more vulnerable than aquifers with porous materials to potential contamination.

7.6.3 Off-Site Wells

A comparison to the NSE Tier 1 EQS and CDWQG indicates water sampled from off-site wells mostly satisfied all NSE Tier 1 EQS and CDWQGs, with the following exceptions.

- Turbidity (post pumping) was slightly elevated in PW1;
- Aluminum (pre pumping), chloride, turbidity, iron and manganese concentrations (pre and post pumping) were elevated at PW2;
- Aluminum (pre pumping), arsenic, iron, manganese and turbidity (pre and post pumping) were elevated at PW3;
- Colour (post pumping) and iron, manganese and turbidity (pre and post pumping) were elevated at PW4;
- Turbidity (pre and post pumping) was elevated at PW5;
- Total coliforms (pre pumping) were elevated and pH (pre and post pumping) was depressed at DW1.

The elevated chloride concentration at PW2 was likely due to road salt influences. Guidelines for aluminum, iron and manganese are not health based concerns; these elevated concentrations (and colour and turbidity) are likely associated with the natural geology of the underlying plutonic bedrock.

The guideline for arsenic is health based; although the elevated arsenic concentration appears to be natural in nature and not the result of pumping at the site, the potable water at PW3 should be treated.

7.6.4 Sea Levels

Figure 102 (Appendix 5) plots the drawdowns of Well 3 and Well 4 with conductivity. These two wells (as well as PW2) experienced drawdowns below sea level. Conductivity (as well as dissolved chloride, sodium and bromide) can be used as indicators of possible salt water intrusion from the Atlantic Ocean.

At Well 3 and Well 4, bromide was analyzed in the 72-hour test; bromide at both locations was not detected. Therefore, in our opinion the slightly increasing sodium, chloride and conductivity concentrations at Well 4 are likely not related to salt water intrusion.

Although bromide was not analyzed in the water from PW2, given its proximity to the road and the parking lot servicing the commercial building, the chloride detected in this well is likely from road salt impacts.

7.6.5 **Piezometers**

Analytical results from water sampled from the wetland piezometer indicate that surface water generally had a depressed pH, was excessively turbid and had elevated colour. There were also elevated aluminum, iron and lead concentrations. These parameters would likely be associated with organic matter present in the wetlands. The wetland surface water values were not compared to drinking water guidelines, although these results were compared to NSE Tier 1 EQS freshwater surface water and CCME Freshwater Aquatic Life guidelines.

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Water Quantity

Long term pumping test data showed a pseudo steady state when Well 3 pumping rate is 31.8 L/min (45.82 m³/day) and Well 4 pumping rate is 20.46 L/min (29.45 m³/day). However, according to the Farvolden equation, the estimated Twenty Year Safe Yield for Well 3 is 16.71 L/min (24.07 m³/day) and is 28.05 L/min (40.39 m³/day) for Well 4.

We recommended a pumping rate of 16.71 L/min (24.07 m³/day) at Well 3 and a pumping rate of 20.46 L/min (29.45 m³/day) at Well 4. This rate can be maintained on a daily basis for periods of 12 hours, allowing sufficient recovery time (12 hours) between each day. In the event that the well needs to be producing for a continuous 24 hours, we recommended that a full 24 hours of recovery be completed to allow the well to recover to static water levels.

The proposed pump rates may not be sufficient to accommodate peak supply demands; storage is already planned for potable water use. Additional water requirements may be required for any water treatment; the additional requirements should be determined when a treatment system in chosen.

The storage capacities will be optimized during detailed design. From review of Appendix F of the NS On-Site Sewage Disposal Systems Technical Guidelines which provides guidelines for design wastewater flow rates from various types of buildings and facilities (e.g. mulit-unit residential, residential, commercial, etc), total potable consumption has been estimated to be 35,950 L/day. This number is broken down as follows:

- Multi-Unit Residential Building A (33,250 L/day):
 - o First 3 bedroom unit @ 1,000 L/day = 1,000 L/day
 - o 6 x 1 bedroom units @ 500 L/day = 3,000 L/day
 - 39 x 2 bedroom units x 750 L/day = 29,250 L/day
- Commercial Building C (2,700 L/day):

P-0012667-0-00-200

60 employees x 45 L/employee/day = 2,700 L/day

Therefore, with a combined safe yield from wells 3 (16.71L/min) and 4 (20.46 L/min) of 53,524 L/day, these wells can likely support both Buildings A and C.

Additional detailed assessment will be carried out prior to design of Phase 2 to confirm the remaining areas of the site can support additional development without negatively impacting existing water well supplies.

Water conservation practices should be practiced where possible. The wells should also be equipped with flow meters, prior to conversion into production wells, so that actual consumption can be monitored. Additionally, we recommend that a low water level probe be installed inside the wells above the submersible pumps. These probes can be used as a safety to switch off the submersible pump in the event that water levels drop too low.

8.2 Interference

The radius of influence of pumping Wells 3 and 4 is approximately 210 m. An impact on the level of water is present inside this radius. A drawdown was measured on the private wells PW1 and PW2 during the long-term pumping test. The drawdown is very low and negligible in PW2. At PW1, the drawdown reached a maximum of 5.89 m. The information reviewed from the well log has shown that PW1 is drilled to a depth of 163 feet (below ground surface) and the depth of the pump is between 150 and 153 feet (below ground surface). The impact at PW1 when pumping well 3 and 4 is considered low compared to the available drawdown.

At the recommended long term pumping rates, impacts on the neighbouring potable wells will be lower than what was observed during the long term pump test.

8.3 Chemical Quality

Manganese concentrations exceeded the CDWQG AOs for both Well 3 and 4. Well B also has detectable total coliforms in the 36 hour test, although there were no total coliforms at 72-hours.

Following continuous pumping, the manganese concentration was still elevated. The elevated manganese (and usually iron) concentrations are likely associated with the natural geology of the underlying plutonic bedrock. Typically, continuous pumping results in lower concentrations of these (and other) parameters.

Trace toluene was detected in the 72-hour sample from Well 4; given its very low reported concentration (slightly over the laboratory detection limit), this is likely an anomalous result.

Periods of pump cycling may lead to elevated iron and manganese concentrations in the well water. Elevated iron concentrations can cause coloring of the water during production, staining of plumbing, and a metallic taste. In certain cases, iron can also promote the growth of iron bacteria in water mains and service pipes. Elevated manganese concentrations can

also cause staining of fixtures and metallic taste. A treatment system may be required to address excessive iron and manganese concentrations; however, these parameters are not health-related.

Little groundwater filtration occurs in a fractured bedrock aquifer, and groundwater velocities are relatively high in this type of aquifer due to the low void space. The absence of natural filtration, unlike in aquifers with porous materials (sands), causes fractured bedrock aquifers to be more vulnerable than aquifers with porous materials to potential contamination. Adequate buffers should be implemented to protect the water quality and site drainage (particularly from parking lots that are maintained with salt during the winter) should be directed away from the well locations.

Further, we recommend an ongoing groundwater testing program (yearly samples) to ensure that water quality maintains drinking water standards.

8.3.1 **Treatment Options**

Water treatment requirements will depend upon the ultimate consumer of the water; however, at a minimum, the water must be treated to satisfy the Nova Scotia Environment Tier 1 EQS or CDWQG. Treatment units should be designed to suit the specific needs and water chemistry at the site; based on the current analytical results, there are no health based criteria that require treatment. Howerver, if water is stored to buffer against peak demands, chlorination (or other bacteria treatment) may be prudent. The wells do not appear to be connected to the neighbouring wetland. At this time, haloacetic acid (HAAs) and trihalomethanes (THMs) are not a concern.

Some basic treatment methods for various uses are provided in Table 8-1, below. Infrastructure, operation and maintenance costs vary with the type of treatment system installed; including additional electrical costs to run the system, and maintenance and media replacement costs depending upon the quantity of water treated.

Table 8-1. Treatment Options.

TREATMENT METHOD	USES			
Activated carbon filtration	Removes organic compounds, including pesticides.			
Reverse osmosis	Removes heavy metals and nitrates; often used in combination with activated carbon filters.			
Distillation	Removes heavy metals and nitrates; often used in combination with activated carbon filters. Kills micro-organisms. Can be used to remove objectionable aesthetic parameters (iron, manganese)			
Ozonation	Removes organic compounds, including pesticides; often used in combination with activated carbon filters. Kills micro-organisms.			
Greensand Filtration	Removes objectionable aesthetic parameters (iron, manganese, H ₂ SO ₄)			
Water Softener	Removes excess calcium (hardness)			

TREATMENT METHOD	USES		
Chlorination	Kills bacteria and viruses. Used in conjunction with filtration to remove objectionable aesthetic parameters (iron, manganese, tannins, H ₂ SO ₄)		
Sediment Filtration	Removes sediment and turbidity		
Aeration	Used in conjunction with filtration to remove objectionable aesthetic parameters (iron, manganese, H ₂ SO ₄)		
Ultraviolet	Kills all microorganisms. Use in conjunction with microfiltration to improve inactivation and remove particulate matter, including parasites.		

8.4 Other Considerations

Currently, based on the proposed development activity for the site, the drinking water may be considered a public drinking water supply under the Nova Scotia *Water and Wastewater Facilities and Public Drinking Water Supplies Regulations* as the wells could:

i) regularly serve 25 or more persons per day for at least 60 days of the year.

Further, in accordance with the *Water and Wastewater Facilities and Public Drinking Water Supplies Regulations*, registered water supplies would need to be regularly sampled, tested and monitored in accordance with the *Guidelines for Monitoring Public Drinking Water Supplies*, more specifically for:

- a) microbiological quality;
- b) general chemical and physical quality;
- c) disinfection residual, if the owner is using a disinfection system;
- source and treated water turbidity, if the owner is using chemically assisted filtration;
- e) fluoride concentrations, if the owner is using fluoridation; and
- f) any substances required by the Minister or an administrator.

Based on the proposed water requirements for the subject property supplied to Englobe by the project designer, the daily water withdrawal for the site has been estimated to be in the range of 55,000 litres per day. Once the site design and the water requirements are finalized, an evaluation should be conducted to determine if the site needs to be registered as a large capacity water user.

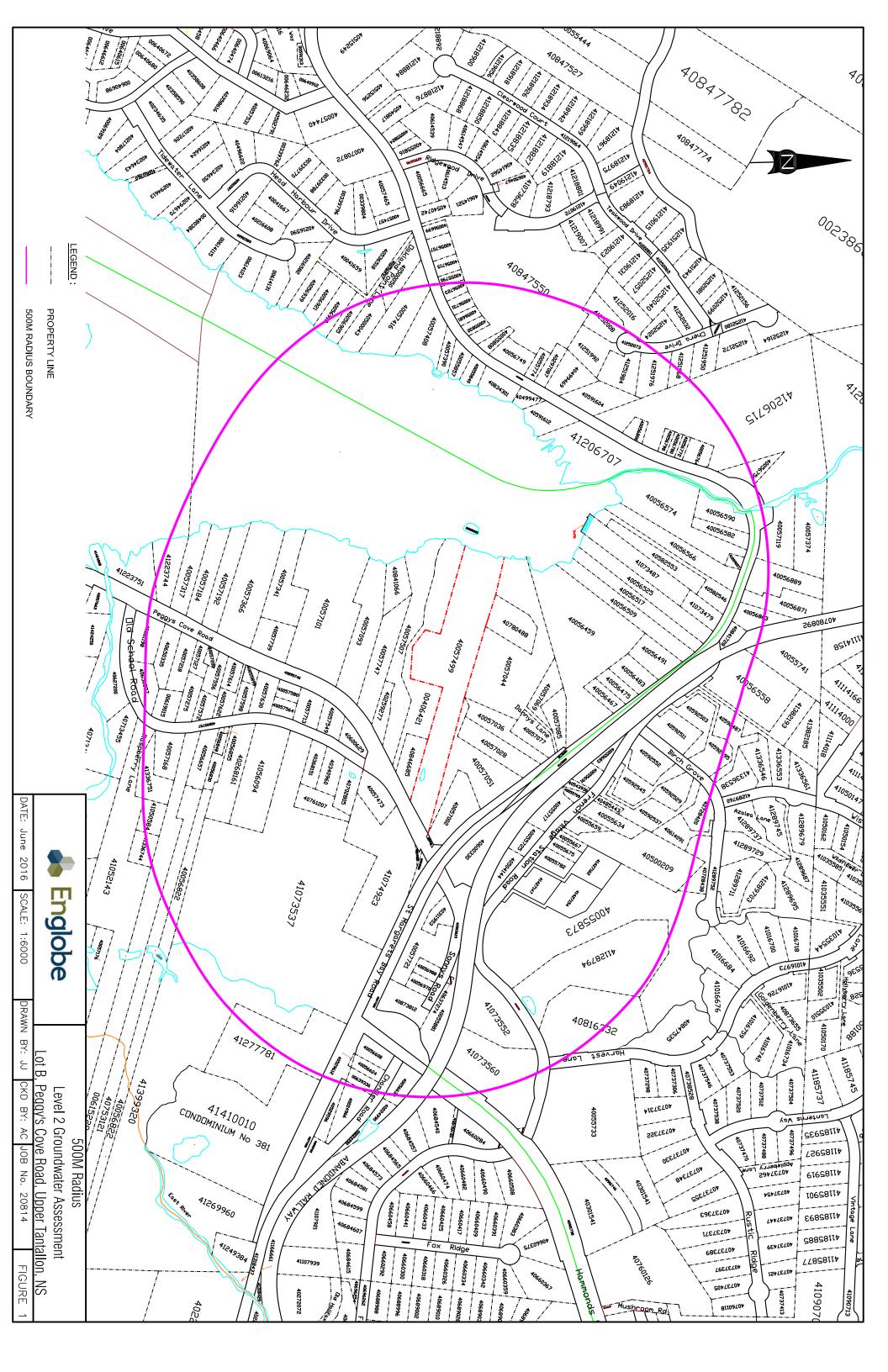
9 **LIMITATIONS**

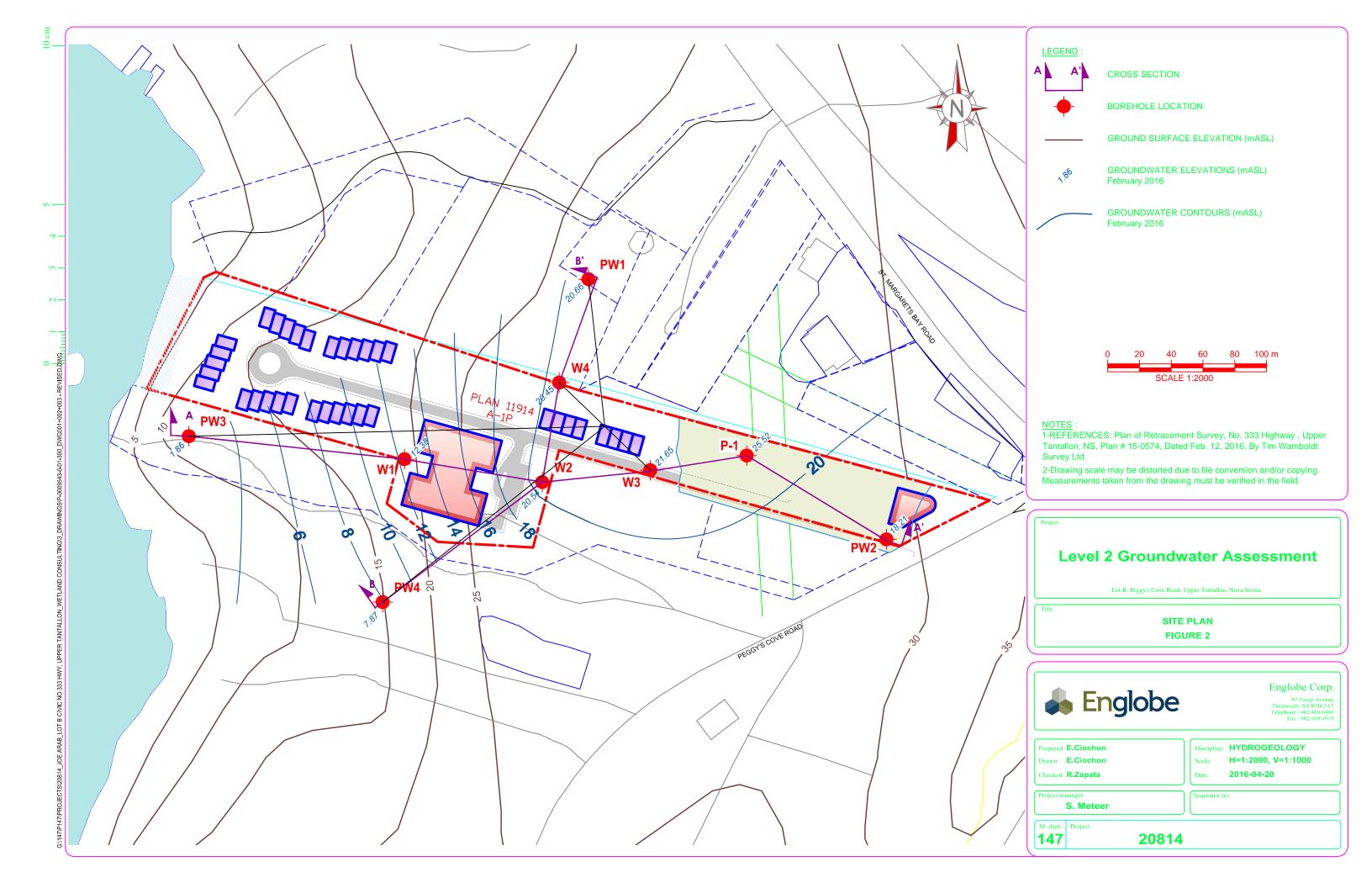
This review and assessment was conducted using the methodology described in this report. The opinions in this report are provided using generally accepted scientific judgement, principles and practices; however, due to the inherent uncertainty in these processes, no guarantee of conclusion is intended or can be given.

It is important to note that the investigation involves a sampling of the site gathered at specific test locations and the conclusions in this report are based on this information gathered.

This report was prepared by Englobe Corp. for the exclusive use of 3283920 Nova Scotia Limited. The scope of the services performed may not be appropriate to satisfy the needs of third parties. Any use which a third party makes of this report, or any reliance on or decisions made based on it, is the sole responsibility of the third party. Englobe accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

This report has been prepared by Aven Cole, M.Sc.E., P.Eng., with contributions by Reinhard Zapata, Ph.D., P.Geo. and Simon Bouchand, géol. M.Sc.A.


10 **REFERENCES**


- Canada Mortgage and Housing Corporation. 2014. Household guide to water efficiency.
- CBCL. 2004. Atlantic Canada Guidelines for the Supply, Treatment, Storage, Distribution and Operation of Drinking Water Supply Systems.
- Environment Canada. 2016. Weather Data for Halifax International Airport, January to March 2016.
- Environment Canada. 2011. 2011 Municipal Water Use Report, Municipal Water Use 2009 Statistics.
- Nova Scotia Environment. 2011. Guide to Groundwater Assessments for Subdivisions Serviced by Private Wells.
- Water Research Foundation. 2016. Residential End Uses of Water, Version 2: Executive Report.
- WSP. 2014. Level I Groundwater Assessment Report, PID: 40057499, Peggy's Cove Road, Upper Tantallon, Nova Scotia.

Appendix 1 Plans

B' (NORTH) PW1 **OBSERVATION WELL** WELL 2 WELL 4 B (SOUTH) **OBSERVATION PUMPING** (Inferred) 30 WELL WELL -GROUND PW4 SURFACE OBSERVATION 20 20 WELL 15 15 INFERRED GROUNDWATER 10 5 TABLE -5 -10 -10 -15 -15 -20 -20 -25 -25 -30 -30 -35 -35 -40 -40 -45 -45 **/** -50 -50 -55 -55 -60 -60 -65 -65 -70 -70 -75 -75 -80 -80 -85 -85 -90 -90 -95 -95 -100 -100 -105 -105 -110 -110 -115 -115 -120 -120 50 100 150 200 250 DISTANCE (m)

LEGEND :

PEAT

GRAVEL

SILT AND SAND

CLAY AND BOULDERS

CLAY, SAND AND GRAVEL

GRANITE

WATER LEVEL

─── WATER BEARING FRACTURE

-----SEA LEVEL

1-Assumed geology of PW1, PW3 and PW4 is similar to PW2.

2-Drawing scale may be distorted due to file conversion and/or copying. Measurements taken from the drawing must be verified in the field.

Level 2 Groundwater Assessment

Lot B, Peggy's Cove Road, Upper Tantallon, Nova Scotia

CROSS SECTION B - B' FIGURE 3

Englobe Corp.

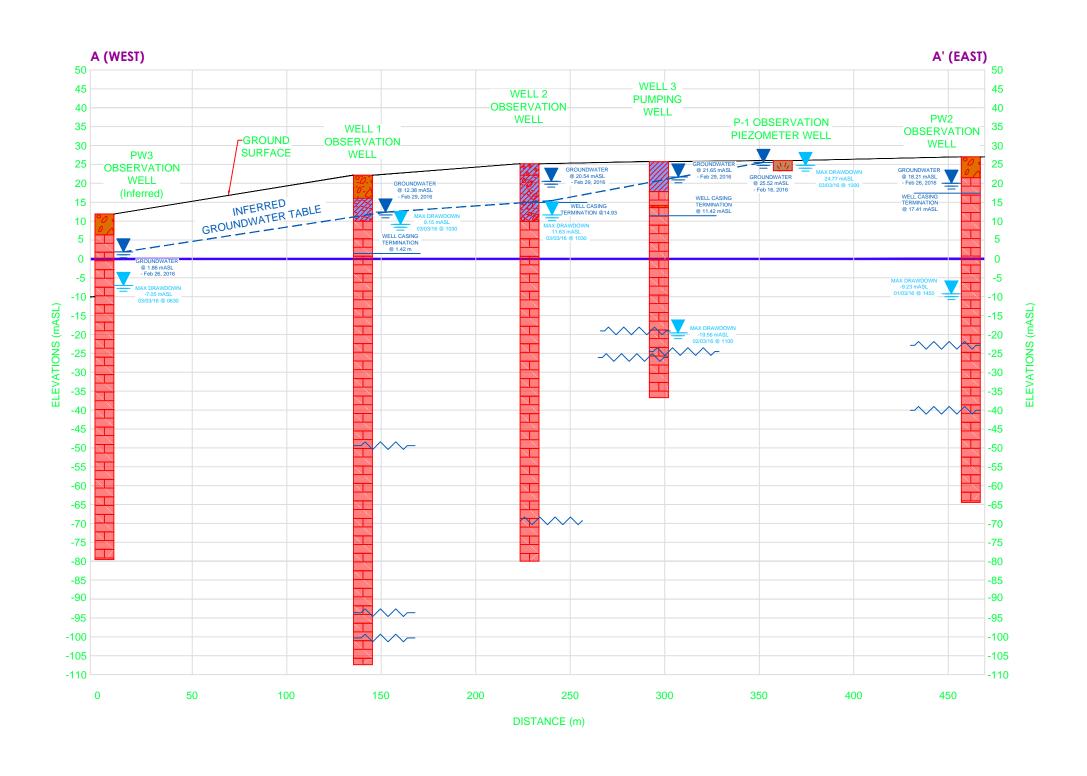
97 Troop Avenue Dartmouth, NS B3B 2A7 Telephone: 902.468.6486 Fax: 902.468.4919

Prepared **E.Ciochon**

Drawn E.Ciochon

Checked R.Zapata

2016-04-20


Discipline HYDROGEOLOGY

H=1:2000, V=1:1000

S. Meteer

147

20814

LEGEND :

80 S

SAND AND GRAVEL

GRAVEL

CLAY AND SAND

CLAY AND BOULDERS

CLAY, SAND AND GRAVEL

GRANITE

WATER LEVEL

─── WATER BEARING FRACTURE

------ SEA LEVEL

<u>_</u>

MAXIMUM DRAWDOWN

NOTES

1-Assumed geology of PW1, PW3 and PW4 is similar to PW2.

2-Drawing scale may be distorted due to file conversion and/or copying. Measurements taken from the drawing must be verified in the field.

Project

Level 2 Groundwater Assessment

Lot B, Peggy's Cove Road, Upper Tantallon, Nova Scotia

Title

CROSS SECTION A - A'
FIGURE 4

Englobe Corp.

97 Troop Avenue Dartmouth, NS B3B 2A7 Telephone : 902.468.6486 Fax : 902.468.4919

Prepared E.Ciochon
Drawn E.Ciochon

Discipline HYDROGEOLOGY
Scale H=1:2000, V=1:1000

Checked R.Zapata

Date 2016-04-20

Project manager

147

Sequenc

S. Meteer

ect

20814

Appendix 2 Well Survey Results

Civic No.	Street	Well Log			Well Type	Year Installed	d Depth (ft) Treated? Type of Treatment		Owner	Comments: Quantity, Quality, odours, etc	Participate in Level 2?
12//6	Peggy's Cove Road										
	Peggy's Cove Road										
	Peggy's Cove Road										
	Peggy's Cove Road										
	Peggy's Cove Road										
	Peggy's Cove Road										
	Peggy's Cove Road										
	Peggy's Cove Road										
	Peggy's Cove Road										
	Peggy's Cove Road								NA		
	Peggy's Cove Road								NA		
	Peggy's Cove Road								NA		
	Peggy's Cove Road								NA		
	Peggy's Cove Road								NA		
	Peggy's Cove Road	020223			Drilled				NA		
	Peggy's Cove Road	020223			Dimed				NA		
	Peggy's Cove Road				Dug				NA		NA
	Peggy's Cove Road				Drilled				Mel Dauphine	Good	NA
	Peggy's Cove Road				Dug				Morash	Uncooperative	
	Peggy's Cove Road				Dug				Manual (vacant)	For Sale Commercial	
	Peggy's Cove Road				No well				Richard Whitman	Commercial	NA
										Commercial	Yes
13546	Peggy's Cove Road				Drilled			no	Terry & Richard Whitman		(PW4)
13548	Peggy's Cove Road				Drilled			no	Francois Dolbec		Yes - water quality only (PW5)
13549	Peggy's Cove Road (Ronald A Walker Funeral Home)				Dug				Walker Funeral		NA
	Peggy's Cove Road									Vacant lot	İ
	Peggy's Cove Road (Rum Hollow Seaside B&B)				Dug		20		Jim Edward	Good	Yes - water quality only (DW1)
13576	Peggy's Cove Road				Drilled	1988	200		David Flemming	Great Water	Yes (PW3)
13578	Peggy's Cove Road (Acadian Maple Products)	010106			Drilled				Acadian Maple	No	Yes (PW2)
13589	Peggy's Cove Road (Multiple Businesses)	101635			Drilled	2011			Bluenose Accounting Anthony Fielding	As	
5181	St. Margarets Bay Road (Multiple Businesses)	931034			Drilled				Redmonds/Maripossa/ve t/book store	Odour	
5209	St. Margarets Bay Road (Home Hardware)				Drilled				Redmonds/Maripossa/ve t/book store	odour	
5210	St. Margarets Bay Road (Irving/Circle K)	120210	940883	530088	Drilled				Irving		
	St. Margarets Bay Road (Super Store)		2 .2205		Drilled	2013			Cobalt		
	St. Margarets Bay Road (Businesses)				Drilled	2013			Cobalt		
	St. Margarets Bay Road (Mariposa Natural Mkt & Café)				Drilled				Redmonds/Maripossa/ve t/book store	odour	
5236	St. Margarets Bay Road (TD Canada)				Drilled	2013			Cobalt		
	St. Margarets Bay Road (res or vacant?)	020958			Drilled	Looks recent			Former Country Garden Centre	Unknown	
5250	St. Margarets Bay Road (Vet)				Drilled				Vet (David)	Unknown	No
	St. Margarets Bay Road (Multiple Businesses)								On numbered co.		
	St. Margarets Bay Road (Multiple Businesses)	030230							On numbered co.		
	St. Margarets Bay Road				Drilled	Decades ago			Betty Kedy	Good	NA
	St. Margarets Bay Road				Dug	Decades ago			Joanne Kedy	Good	NA
	St. Margarets Bay Road				Dug	Decades ago (20')			Danny Maryatt	Slight As	NA
5328	St. Margarets Bay Road	040499			Drilled	,		Unknown	Margaret's elderly mom	Unknown	
	St. Margarets Bay Road (Green Houses)				Dug			Unknown	Garden Centre	Unknown	NA
	St. Margarets Bay Road				Drilled					Unkonwn	
	St. Margarets Bay Road	001174			Drilled					Unknown	
	St. Margarets Bay Road								NA		
????					Drilled				St. Lukes	Major quality issues	
36	Old School Road								NA	_	
43	Old School Road								NA		

							•		
	Old School Road						NA		
	Old School Road						NA		
	Old School Road						NA		
	Old School Road						NA		
53	Old School Road						NA		
57	Old School Road						NA		
58	Old School Road						NA		
61	Old School Road						NA		
70	Old School Road						NA		
74	Old School Road			Dug			Manual (13535 SMB)	For sale commercial	
75	Old School Road						NA		
77	Old School Road						NA		
81	Old School Road						NA		
85	Old School Road						NA		
89	Old School Road			Drilled			Terry Pulsifer	Good/ 2 gpm	
6	Sonnys Road						NA		
9	Sonnys Road						NA		
10	Sonnys Road (Bay Equip,emt Rentals Sales & Services)			Dug	old home		House		
14	Sonnys Road			Drilled			Bay Rentals		
	Franch Villege Charles Dood			D			vacant trailer for sale.		
60	French Village Station Road			Dug			Unoccupied		
	French Village Station Road			Dug &			NA		
61	French Village Station Road			Drilled			NA		
62	French Village Station Road			Drilled			NA		
65	French Village Station Road			Drilled			Carol Rolf (483-6623)	Good	
69	French Village Station Road	120904					NA		
73	French Village Station Road			Drilled			Horse Farm		
77	French Village Station Road						Cottage ? NA		
80	French Village Station Road			Dug			NA		
	Franch Village Chatley Dand			Spring fed			Handhan Chaffan	Cond	
84	French Village Station Road			dug			Heather Shaffer	Good	NA
85	French Village Station Road			Dug (11')			Darlene & Roy Shaffer	Good	
	French Village Station Road						NA		
	French Village Station Road	010333					Philip & Rosalie Morash		
12	Dannys Lane			Dug			Sandy Pulsifer Mom	Good/House tear down	
	Dannys Lane	004.475			4000	4.55			Yes
		921475	1	Drilled	1992	165	Sandy Pulsifer	Good	PW1
38	Dannys Lane	321173							L AA T

Appendix 3 Well Logs

NSE Well No.

			-00	Oore .				(Departmental use)				
		ied Well C	ontractor		2000	Well ()wner/Cor	tractor Information	1				
	ravis Ja			Well drilled for:									
Certifica	te No. <u>84</u>	7		or Contractor/B	uilder/Consulta	nt/etc.	3283	920 NOVAS	icot	ria Ltd			
Compan	Bluene	ose Well Di	rilling Ltd		ic Address of well								
Address		awrencetov			No. and Subdivision of well								
	Lawren	cetown, H	RM										
Helpers	Name(s)			County	ty Postal Gode Phone								
Byron	Jacobs	1	504 - 107 - 16 S.	Nearest Commu	unity in: INS	Atlas 🔽	NS Map Book	(1			
	74		Stratigra	phic Log				W	Well Location				
	in feet	Colour	General Descriptio		Bedrock	Water Found	Well Sketch	Property (PID)					
From 0	20		Sand +	GRAIN	1	YN	OKCION						
20	40		clay +		- 1	YN		GPS (WGS84 UTM) Northing	49	148821			
HI	56		Droken		te.	YN		Easting (24	29664			
56	425		Granity			YN		■ NS Atlas □ NS	Mon	Book			
	10.0					YN		ME INS Allas LINS	Iviap	BOOK			
						YN		Page	C	olumn Row			
						YN		Roamer Lette	ı	Roamer Number			
						YN		Well	Loca	ation Sketch			
		431.50	27/4			Y M							
						YN							
			100 100 100 100 100 100 100 100 100 100			YN							
						Y N							
		111111111111111111111111111111111111111				YM							
			Attach Another Sheet if		[0]	D' 1	- N		Wat	er Yield			
	otal depth below surface 425 ft				Clearance								
Total de	pth below	surface	_,425_	ft	Oil tank			11		☐ Bail ☐ Pump			
Depth t	o bedrock		56	ft	Roadway oute	er boundary		ft Rate 5 /2 i	gpm	Duration 1 hrs			
Water b	earing fra	ctures encoun	tered	ft	Road name _			Test depth	4	420t			
			n 407 n		On-site sewa	ge system	f	t Depth to water at e	nd of	test <u>420</u> ft			
Well C					Off-site sewa			II .		ft			
Outer (Inner Casing										
From_	0	To 68	_ft From 1	oft	Cesspool or source of cor	ntamination	1	ft []		ft			
			in Diameter			ify source)		by hrs mins after test ended.					
									Don't to statistical 35				
			in Wall Thickness		Watercourse	ft	Well	ft Overflow	☐ Overflow				
Materia	il: 🖊 stee	ol or	Material: stee	lor				Water Quality					
_			_		Colour		Taste	Odour		Other			
ASTM :	spec. A-5	589	ASTM spec		Final S	Status of	Well	Water Use	\neg	Method of Drilling			
Length	of casing	above ground	ft	in	✓ Water su		WCII	✓ Domestic	\neg	∡ Rotary			
driv	veshoe: typ	Heavyw	all		☐ Observat			☐ Industrial		☐ Cable Tool			
A are	ut type B	entonite	packer: type		☐ Test Hole			☐ Commercial		☐ Jet			
		1 1000	_ a paonor. typo		☐ Recharge			☐ Municipal		□ Other			
Well F				ud and	☐ Abandon		ient supply	☐ Irrigation					
∠ ope	en hole L	slotted casir	ng 🔲 screen 🔲 gra	vel pack	☐ Abandor			☐ Public Supply					
Screen	s: make _		material		Abandor			☐ Agricultural		Drilling Fluids			
length .		ft from	to ft slo	ot size	Untinish			☐ Heat Pump		Type:			
length		ft from	to ft slo	ot size	Other_			Other					
Gravel	pack: size		from	toft	Other _				긛				
			r's Comments		í——	C	ertificatio	n	\vdash	Mail to:			
								cted in accordance with		va Scotia Department of vironment			
	mel	1			Regulations. 30 Damascus Road, Suite 115					Damascus Road, Suite 115			
					Date Well completed 11 - Dec - 2015 Bedford, Nova Scotia B4A 0C1								
					Signature								
1					II	1	- T	1-7015					

NSE Well No

				CONT.			•		(Departme	ntal us	e)	
			Contractor		Well Owner/Contractor Information							
Name Tra		os		Well drilled	for: Owner							
Certificate N		Wellr):111				370	20 -	T Alone	Car	1:0 111	
			Drilling Ltd		Contractor/Builder/Consultant/etc. 3283920 Nova Scotia Ltd							
Address 23	371 Lawi wrencei				vic Address of well of No. and Subdivision of well							
1000		own, 11	- KM		11000				1000000			
Helpers Nan Byron Ja				County	inty HRM Postal Code Phone							
Dyron 54	coos			Nearest Com	nmunity in: N	S Atlas 5	NS Map 8	Book				
			Stratigra							14/	all Lagation	
Depth in for	eet To C	olour	General Description	of Overburd	en/Bedrock	Water	Well				ell Location	
0 /	0		Clay, Boulde			Found Y	Sketc					
10 4	0		Clay Sand	+ 60	AIN	YN			GPS (WGS84 I	JTM)	1948718 m	
4D 34	5		GRAnite		11001	YW					1429841 m	
						YN						
-					to have	YN			✓ NS Atlas] NS I	Map Book	
			23.513.Hg	Val.		YN			Page	-	Column Row	
						YN			Dan	Letter		
	-		22 - 22 A 1 - 3 Y	4 1 1 2 1 1		YN		ļ	Roamer Letter Roamer Number Well Location Sketch			
-						YN		⊪	W	ell L	ocation Sketch	
						YM						
						Y 1						
						Y						
			Attach Another Sheet if Ned	eded		YN						
	Well C		ction Information		Classes			ᆜᆜ				
stal donth he			345		Clearance D	Jistance	to Neare	est		W	ater Yield	
anth to hade	now suriac	- W	0	ft	Oil tank		ft	^	Method: 🗹 Ai	r blow	n 🔲 Bail 🔲 Pump	
						boundary		_ft F	late 5	igpn	Duration 1 hrs	
			red		Road name			II.			540 tt	
210	ft	ft	tft	ft	On-site sewage	system		- 11			of test 340 ft	
ell Casing					Off-site sewage			- 11			ft	
_		5n.	Inner Casing		Cesspool or oth source of conta	ner potent	tial	11,			ft	
ameter			From To _		source of conta (please identify	mination source)		_ft "			nrs mins	
								Hat	ter test ended			
III Thickness	100	in	Wall Thickness	in	Watercourse	ft V	Vell	ft D	epth to static lev	rel	<i>21</i>	
terial: 🗸 s	teel or		Material: steel or									
									ter Quality			
TM spec. A	-589		ASTM spec.		Colour	_	Taste		Odour		Other	
gth of casin	g above gr	round 1	ft	in	Final Sta		Vell	1	Water Use		Method of Drilling	
driveshoe: t	уре Неа	vywall			☑ Water suppl	У		☑ Do	mestic		☑ Rotary	
grout hine	Bentonit	te r	packer: type		Observation	Well		☐ Inc	dustrial		☐ Cable Tool	
grout. type _			packer: type		☐ Test Hole			☐ Co	mmercial		☐ Jet	
II Finish					Recharge W		- 11	☐ Mu	ınicipal		□ Other	
open hole	slotted	casing	screen gravel pa	nck	Abandoned, i			☐ Irri	gation			
ens: make_			material		Abandoned,		· II	☐ Pul	blic Supply		D Dellies This	
th ft from to ft slot size				Abandoned,	salt water			ricultural		☐ Drilling Fluids		
h ft from to ft slot size				☐ Unfinished				at Pump		Туре:		
			from to		Other	14		Othe	er	_		
- pare of				π	1000	Cert	tification	1		Г	Mail to:	
		_	comments		I certify this well	has been	constructe	ed in ac	cordance with	Nov	a Scotia Department of	
we	W	# 9	1		the Nova Scotia I Regulations.	Environm	ent Act and	d Well (Construction	Envi	ronment	
				Regulations. Date Well completed 09- Dec- 2015 Bedford, Nova Scotia B4A 0C								
				- 11	Signature		Ue	-	200			
		Sec.				0	Dag		2015			

NSE Well No.

				Ž iroo				(Departm	ental u	ise)			
		ied Well Co	ontractor	74.11		Well	Owner/Co	ontractor Infor	natio	on			
	Travis Ja			Well drilled for	: Owner								
	te No. <u>84</u>						1839	20 Alma	Sin	tic	Ita		
Compan	y Bluene	ose Well Dr	rilling Ltd		Contractor/Builder/Consultant/etc3283920 NDO9 Scotia Ltd								
Address	2371 L	awrencetow	n Rd.	Civic Address	ic Address of well								
	Lawren	cetown, HI	RM	Lot No. and Su	t No. and Subdivision of well								
Helpers	Name(s)			County	nty HRM Postal Code Phone								
	Jacobs			N									
					unity in: 🛂 NS	Atlas 🔽	NS Map Bo	ok					
Donth	in fact		Stratigra	phic Log					Well Location				
From	in feet To	Colour	General Description	n of Overburden	/Bedrock	Water Found	Well Sketch	Property (PII))				
0	26		Sand, clay,	water.	mulders	YN		GPS (WGS84	LITA	0			
26	38		GRANITE			Y		No.	rthing	79	48 <i>806</i> m		
38	40		GRAVE +		2	YN		Ea	sting	542	9883 m		
46	205		Granite	_		YW		TANG AN			D. d.		
				Station in		YN		■ NS Atlas		5 Mar	3 BOOK		
160						YN		Page		(Column Row		
						YN		Ros	mer Let	ter	Roamer Number		
						YN							
		10 mg/2				YN			Wel	LOC	ation Sketch		
						YN							
						YN							
						YN							
						YN							
			Attach Another Sheet if N	leeded									
	W	ell Constru	ction Information		Clearance I	Distance	to Neare	st		Wat	er Yield		
Total da			205		Oil tank				Air	Jawa	☐ Bail ☐ Pump		
Depth to	bedrock _	70	>	ft	Roadway outer	boundary		III .		_	Duration 1 hrs		
			ered		Road name _						DOft		
14.	<u>1</u> tt	165	ftftft	ft	On-site sewag	e system		ft Depth to wat	er at e	nd of	test 200ft		
Well C	asina				Off-site sewag						ft		
Outer C			Inner Casing		100000								
From _	D_1	. 47	ft From To	ft	Cesspool or other potential source of contaminationft					Vater level recovered to ft			
		,	n Diameter		(please identify		by	by hrs mins					
								- Depth to stat	Depth to static level ft				
Wall Thi	ckness 1	ir	Wall Thickness	in	Matercourse ft Well ft								
Material	: 🛭 steel	or	Material: 🔲 steel	or				Water Qual	tv				
					Calaur		Toots				Other		
ASTM s	pec. A-5	89	ASTM spec.		Colour		laste	Odou	_		Other		
			1 ft	in	Final St	atus of	Well	Water U	se		Method of Drilling		
		Heavywa	Name (as Area Second Control		☑ Water sup			☑ Domestic			☑ Rotary		
					☐ Observation	on Well		☐ Industrial			☐ Cable Tool		
grou	t: type Be	entonite	packer: type		☐ Test Hole			☐ Commercial			☐ Jet		
Well Fi	nish				☐ Recharge	Well		☐ Municipal			□ Other		
oper	hole 🔲	slotted casing	screen grav	el pack	☐ Abandoned	d, insufficie	ent supply	☐ Irrigation					
Corcon	make		material		☐ Abandone	d, poor qu	uality	☐ Public Supply					
				98 () 18 ()	☐ Abandone	d, salt wat	ter	☐ Agricultural			☐ Drilling Fluids		
length ft from to ft slot size					☐ Unfinished	1	1111	☐ Heat Pump			Туре:		
length ft from to ft slot size					Other			Other					
Gravel pack: size from to ft							artificati	77.75	_	긭	Mellter		
	Driller's Comments					Ü.	ertificatio	, , , , , , , , , , , , , , , , , , ,	-	-	Mail to:		
	well #3							cted in accordance					
	we	W.	, ,		Regulations.	A LIVITOR		Fred Godstructi		30 [Damascus Road, Suite 115		
					Date Well completed 16 - Dec - 2015 Bedford, Nova Scotia B4A 0C1					ford, Nova Scotia B4A 0C1			
					Signature								
			talent in the state of the state of		0.000	11	-	2.15					

NSE Well No.

			-6-t-c	2mco				(Departmental	ise)			
		ied Well C	ontractor			Well	Owner/Co	ontractor Informati	on			
_	Travis Ja			Well drilled for		7	2020	22 Alona Ca	1.	1 + 1		
			rilling Ltd	100				20 Nova Sc				
Address		awrenceto cetown, H		15 5 6 6 6 6 6	No. and Subdivision of well							
	Name(s)			County	HRM		Posta	al Code	_ Pho	ne		
Byron	Jacobs			Nearest Comm	unity in: 11/10/19	Atlas 🗸	NS Map Bo	ok				
		7 10 11 15 2	Stratigra	phic Log					Well Location			
Depth From	in feet To	Colour	General Description	n of Overburden	/Bedrock	Water Found	Well Sketch	Property (PID)				
0	43		SADD, Silt, WA	ter, bou	lder5	YM	Okoton					
43	305		Granite			YN		GPS (WGS84 UTI Northin				
		- H5-11 S						Easting	040	2<i>982</i>8 m		
								☑ NS Atlas □	IS Mar	o Book		
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					Y M		Page		Column Row		
						YN				Roamer Number		
	022					YN		Roamer Le				
						YN		Wei	I Loc	ation Sketch		
						Y						
						YN						
						Y						
		5 35 77	**************************************		111111111111111111111111111111111111111	YN						
			Attach Another Sheet if N	leeaea	[a]					V. 11		
			uction Information		Clearance			est	Wat	er Yield		
Total de	pth below:	surface	305	ft	Oil tank		ft	Method: 🗹 Air	blown	Bail Pump		
Depth to	bedrock _	4	3	ft	Roadway oute	r boundary		ft Rate 12	igpm	Duration _1 hrs		
Water b	earing frac	tures encoun	tered 9D	ft	Road name _			Test depth	3	00 t		
18b	ft a	220	# 240 #	285 tt	_ft On-site sewage systemft Depth to wa					test 300 ft		
Well C	asing									ft		
Outer C		-0	Inner Casing							ft		
From _	0 1	52	ft From To	oft	source of con	tamination		_ft []	by hrs mins			
Diamete	r(e	in Diameter	in	(please identi	ly source)		after test ended.				
Wall Thi	ckness 1	88	in Wall Thickness	in	Watercourse .	ft \	Well	 Depth to static lev ft ☐ Overflow 	el	20ft		
Material	: 🛭 steel	or	Material: steel	or	31,000 //			Water Quality				
ASTM s	pec. A-5	89	ASTM spec		Colour		Taste	Odour		Other		
			1 ft		Final S	tatus of	Well	Water Use		Method of Drilling		
		Heavywa	Little attention of the control of t		Water sup			☑ Domestic		Rotary		
			_ packer: type		Observati Test Hole			☐ Industrial ☐ Commercial		☐ Cable Tool ☐ Jet		
Well Fi	nich				☐ Recharge	Well		☐ Municipal		□ Other		
		slotted casin	g 🗖 screen 🗖 grav	el pack	☐ Abandone	d, insufficie	ent supply	☐ Irrigation				
					☐ Abandone	ed, poor qu	iality	☐ Public Supply				
Screens: make material					☐ Abandone	ed, salt wat	ter	☐ Agricultural		☐ Drilling Fluids		
length ft from to ft slot size					☐ Unfinishe	d		☐ Heat Pump		Туре:		
length _	ft	from	to ft slot	size	Other			□ Other	_			
Gravel pack: size from to ft						Ce	ertificatio	n	匸	Mail to:		
	Driller's Comments					13020	70.00	cted in accordance with	Nov	ra Scotia Department of		
1	Sel	1#1	4		the Nova Sco			nd Well Construction	Env	ironment		
		, ,,			Regulations.		-D-	e-TAIK		Damascus Road, Suite 115 ford, Nova Scotia B4A 0C1		
					Date Well completed 16-Dec-2015							
			22 x 23 x 24 x 24 x 15 x 1		Signature							

Groundwater

Well Log Record

Well Log Record: # 010106

Well Number: 010106

Type: Drilled

Date Well Completed (mm-dd-yyyy): 8-17-2001

Well Owner/Contractor and Location

Well Drilled for: JACTANAH'S CAFE LTD.

or Contractor/Builder/Consultant: KATHY MCDOONALD

Civic Address of Well: 13578 HIGHWAY #333, TANTALLON

Lot #: n/a

Subdivision: n/a County: Halifax

Postal Code: B3Z 1A8

Nearest Community in Atlas/Map Book: UPPER TANTALLON

Certified Well Contractor

Driller Name: ROY, GILLES

Certificate No: 696

Company: BREWSTER WELL DRILLING

Well Status / Water Use

Go Back

Final Status of Well: Water Supply Well

Water Use: Domestic

Method of Drilling: Rotary

Well Location

Nova Scotia Atlas or Map Book Reference

Atlas or Map Book: Map

Map Page No.: 20 Reference Letter: C Reference Number: 5 Roamer Letter: P Roamer Number: 8

NTS Map Reference

Map Sheet: n/a

Reference Map: n/a

Tract No.: n/a

Claim: n/a

GPS (WGS84 UTM)

Northing (m): 4948748 Easting (m): 430014

Property (PID): n/a

Well Location Sketch Available: Yes

Stratigraphy Log

Colour Description Lithology Water Found
--

Geology	Colour	Description	Lithology	Water Found								
From (depth in ft): 0 to: 18												
Primary Geology	Brown	n/a	Gravel & Boulders	V								
Secondary Geology	n/a	n/a	Water	Yes								
From (depth in ft): 18	to: 300											
Primary Geology	Reddish Brown	n/a	Granite	,								
Secondary Geology	n/a	n/a	n/a	n/a								

Well Construction Information

Total Depth Below Surface (ft): 300

Depth to Bedrock (ft): 18

Water Bearing Fractures Encountered at (ft): 180, 220

Outer Well Casing: From (ft): n/a To: 31.5

Diameter (in): 6

Length of Casing Above Ground (ft): 2 and (in): n/a

Driveshoe Make: unknown

Water Yield

Estimated Yield (igpm): n/a

Method: Air Lift Rate (igpm): 0.75 Duration (hrs): 1

Depth to Water at end of Test (ft): n/a

Total Drawdown (ft): n/a

Water Level Recovered to (ft): n/a

Recovery Time (hrs): n/a

Depth to Static Level (ft): n/a

Overflow: n/a

Comments

COMMENTS ARE AVAILABLE FOR THIS WELL LOG. PLEASE CONTACT THE NSE INFORMATION ACCESS OFFICER AT PH: (902) 424-2549 OR EMAIL ENVACCESS@GOV.NS.CA

Go Back

Groundwater

Well Log Record

Well Log Record: # 921475

Well Number: 921475

Type: Drilled

Date Well Completed (mm-dd-yyyy): 11-2-1992

Go Back

Well Owner/Contractor and Location

Well Drilled for: PULSIFER

or Contractor/Builder/Consultant: n/a

Civic Address of Well: BAY ROAD

Lot #: n/a

Subdivision: n/a County: Halifax Postal Code: n/a

Nearest Community in Atlas/Map Book: UPPER TANTALLON

Certified Well Contractor

Driller Name: BREWSTER, LAURIE F.

Certificate No: 178

Company: LAURIE F. BREWSTER WELL DRILLING

Well Status / Water Use

Final Status of Well: Water Supply Well

Water Use: Domestic Method of Drilling: n/a

Well Location

Nova Scotia Atlas or Map Book Reference

Atlas or Map Book: Map

Map Page No.: 20 Reference Letter: D Reference Number: 5 Roamer Letter: F Roamer Number: 8

NTS Map Reference

5/20/2016

Map Sheet: n/a Reference Map: n/a Tract No.: n/a

Claim: n/a

GPS (WGS84 UTM)

Northing (m): 4948500 Easting (m): 430500 Property (PID): n/a

Well Location Sketch Available: Yes

Stratigraphy Log

Geology	Colour	Description	Lithology	Water Found
From (depth in ft): 0 to	: 43			
Primary Geology	n/a	n/a	Clay	n/n
Secondary Geology	n/a	n/a	Boulders	n/a
From (depth in ft): 43 t	o: 163			
Primary Geology	n/a	n/a	Granite	2/2
Secondary Geology	n/a	n/a	n/a	n/a

Well Construction Information

Total Depth Below Surface (ft): 163

Depth to Bedrock (ft): 43

Water Bearing Fractures Encountered at (ft): 130, 163

Outer Well Casing: From (ft): n/a To: 51

Diameter (in): 6

Length of Casing Above Ground (ft): n/a and (in): n/a

Driveshoe Make: n/a

Water Yield

Estimated Yield (igpm): n/a

Method: Air Lift Rate (igpm): 3 Duration (hrs): n/a

Depth to Water at end of Test (ft): n/a

Total Drawdown (ft): n/a

Water Level Recovered to (ft): n/a

Recovery Time (hrs): n/a

BOREHOLE LOG

PROJECT
Level 2 Hydrological Study
Peggy's Cove ROad, Upper Tantallon, NS

LOGGED/DWN. LL				CKD	. A(2		DATE OF INVEST.11/12/15	JOB		20814	HOLE NO. P1		
CAS	SING R	RESIS	TANC	Œ	Д,			<u> </u>	_	SOIL DESCRIPTION	S	OIL S	AMPLE	DRILL TYPE
	blows	/300n	nm ———		<u> </u>	DEP	ты	MODIFIED USCS	ILL	DATUM M	.	田	· E	Hand Auger
WC %	wp-		•	wl-	Δ	DLI	'''	IDO	SYN		COND	TYPE	PENE. RESIST	
10	20	30	40		50	ft	m			SURFACE ELEVATION				Well Details Other Tests
						- -1 -		PT		PEAT: mucky peat, organics, well formed, dense, dark brown, moist to wet.				
				<u>\</u>		-2 -	-							
						-3 -	1-							
						-4 -								
						-5 -								
						-6 - -7	2-							
						- - -8								
						- - -9	-							
						- -10	3-			End of borehole at 2.74m on assumed bedrock. Water level measured on				
						- -11								
						-12 -								
						-13 -	4-							
						-14 -								
						-15 -								
						-16 -	5-							
						-17								
						-18 -	-							PLATE 1

Appendix 4 Step Test Data

WELL #1 DATE Jan 27th, 2016

Time in	Step #1	Step #2	Step #3	Step#4	Rec
Minutes	1.9 gpm	4.2 gpm	4.6 gpm		
0.1	11.3	19.61	37.41		51.68
1	12.15	19.82	37.63		50.72
2	12.45	20.34	37.92		49.83
3	12.6	20.72	38.23		48.82
4	12.7	21.09	38.58		47.9
5	12.77	21.58	38.92		46.98
6	12.84	22.07	39.24		46.04
7	12.88	22.49	39.57		45.15
8	12.93	22.96	39.91		44.31
9	12.99	23.42	40.2		43.45
10	13.03	23.78	40.53		42.58
15	13.19	25.9	42.2		38.57
20	13.8	27.74	43.68		35
25	15.13	29.25	45.02		31.73
30	15.75	30.7	46.26		28.83
40	16.55	33.29	48.44		24.15
50	18.7	35.54	50.21		20.73
60	19.61	37.41	51.68		18.35

Well Depth Pump Setting	129.6 m 91 m	425 ft 300 ft		
Draw Down Step #1 Draw Down Step #2 Draw Down Step #3	8.31 m 17.8 m 14.27 m	27 ft 58 ft 47 ft	8.6 lpm 19.1 lpm 20.9 lpm	1.9 gpm 4.2 gpm 4.6 gpm
Total draw Down after 3 steps	40.4 m	132 ft		
Recovery in one hr Percent of total draw down	33.33 m 83%	109 ft		

Pump model 3/4 hp, 5 gpm series

WELL #2 DATE Jan 26th, 2016

Time in	Step #1	Step #2	Step #3	Step#4	Rec
Minutes	1.1 gpm	2 gpm	4 gpm	-	
0.1	5.55	14.02	24.92		49.26
1	6.02	14.15	25.23		48.63
2	6.32	14.65	25.66		47.9
3	6.62	15.11	26.3		47.2
4	6.85	15.44	26.82		46.52
5	7.12	15.77	27.32		45.81
6	7.36	16.07	27.83		45.2
7	7.58	16.38	28.43		44.55
8	7.83	16.68	29.09		43.87
9	8.03	16.92	29.54		43.22
10	8.24	17.18	30.1		42.65
15	9.17	18.35	32.76		39.65
20	10.02	19.41	35.2		36.84
25	10.77	20.34	37.36		34.26
30	11.42	21.19	39.33		31.8
40	12.47	22.6	42.8		
50	13.35	24.87	46.36		24.02
60	14.02	24.92	49.26		20.93

Well Depth	105.2 m	345 ft		
Pump Setting	91 m	300 ft		
Draw Down Step #1	8.47 m	28 ft	4.5 lpm	1 gpm
Draw Down Step #2	10.9 m	36 ft	9.1 lpm	2 gpm
Draw Down Step #3	24.34 m	80 ft	18.2 lpm	4 gpm
Total draw Down after 3 steps	43.7 m	143 ft		
Recovery in one hr Percent of total draw down	28.33 m 65%	93 ft		

Pump model 3/4 hp, 5 gpm series

WELL #3 DATE Feb 1st,2016

Time in	Step #1	Step #2	Step #3	Step#4	Rec
Minutes	3.9 gpm	8.1 gpm	11.5 gpm		
0.1	4.62	16.15	37.57		52.18
1	5.85	17.09	38.74		48.84
2	6.37	18.53	40.24		46.8
3	7	19.57	41.14		44.97
4	7.61	20.35	41.86		43.19
5	8.2	21.04	42.64		41.25
6	8.73	21.7	43.38		39.42
7	9.2	22.31	43.97		37.78
8	9.61	22.9	44.56		36
9	9.94	23.48	45.15		34.42
10	10.3	24	45.66		32.76
15	11.57	26.26	48.78		25.82
20	12.76	29	50.63		20.5
25	13.53	31.95	52.18		16.59
30	14.06	32.79			13.64
40	15.49	33.98			10.22
50	15.51	35.69			8.7
60	16.15	37.57			8

Well Depth	62.5 m	205 ft		
Pump Setting	55 m	180 ft		
Draw Down Step #1	11.53 m	38 ft	18 lpm	3.9 gpm
Draw Down Step #2	21.42 m	70 ft	37 lpm	8.1 gpm
Draw Down Step #3	14.61 m	48 ft	52 lpm	11.5 gpm

Terminate pumping at the 25 min interval of the third step. Water level close to the pump

Total draw Down after 3 steps 47.56 m 156 ft

Recovery in one hr 44.18 m 145 ft

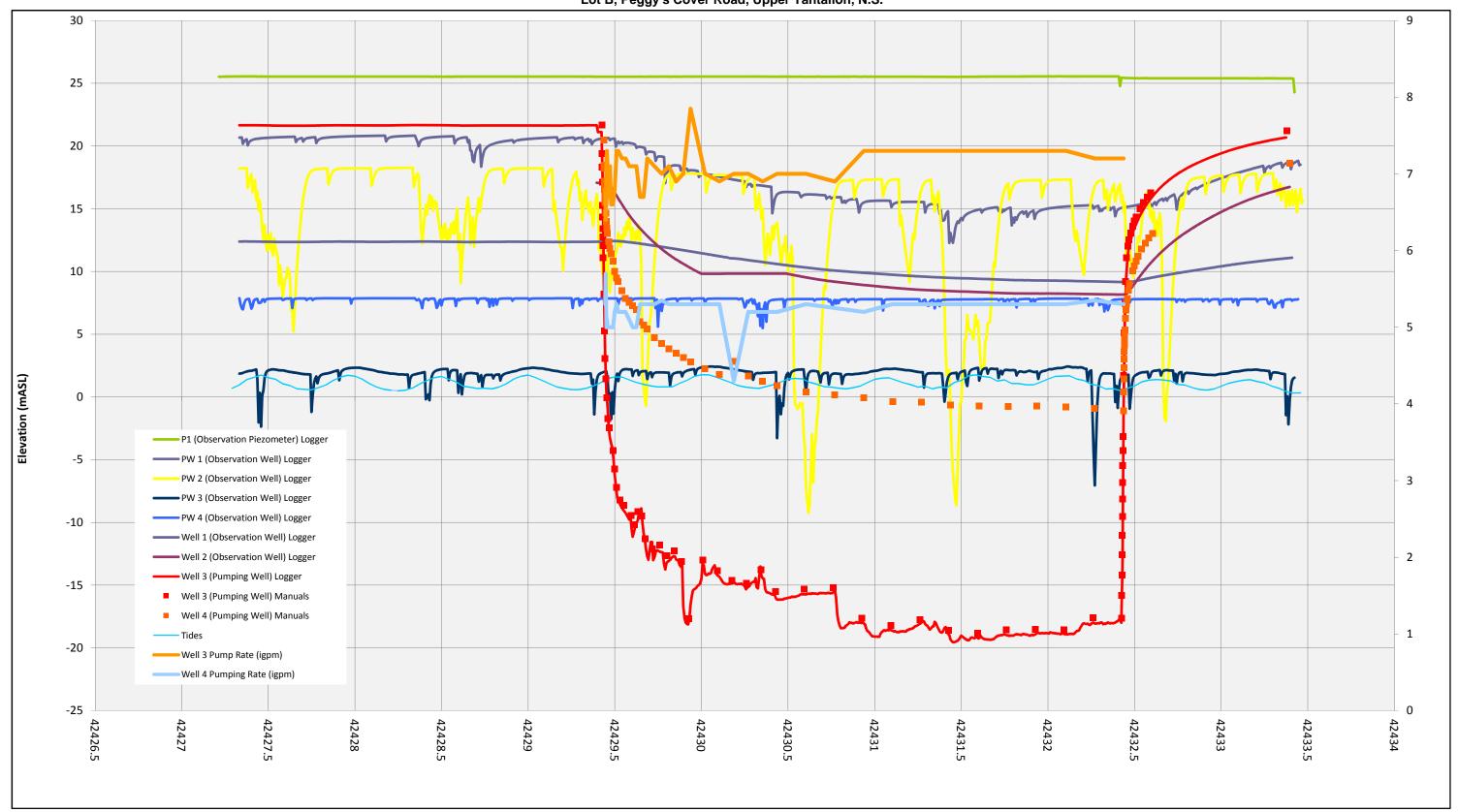
Percent of total draw down 93%

Pump model 1 hp, 18 gpm series

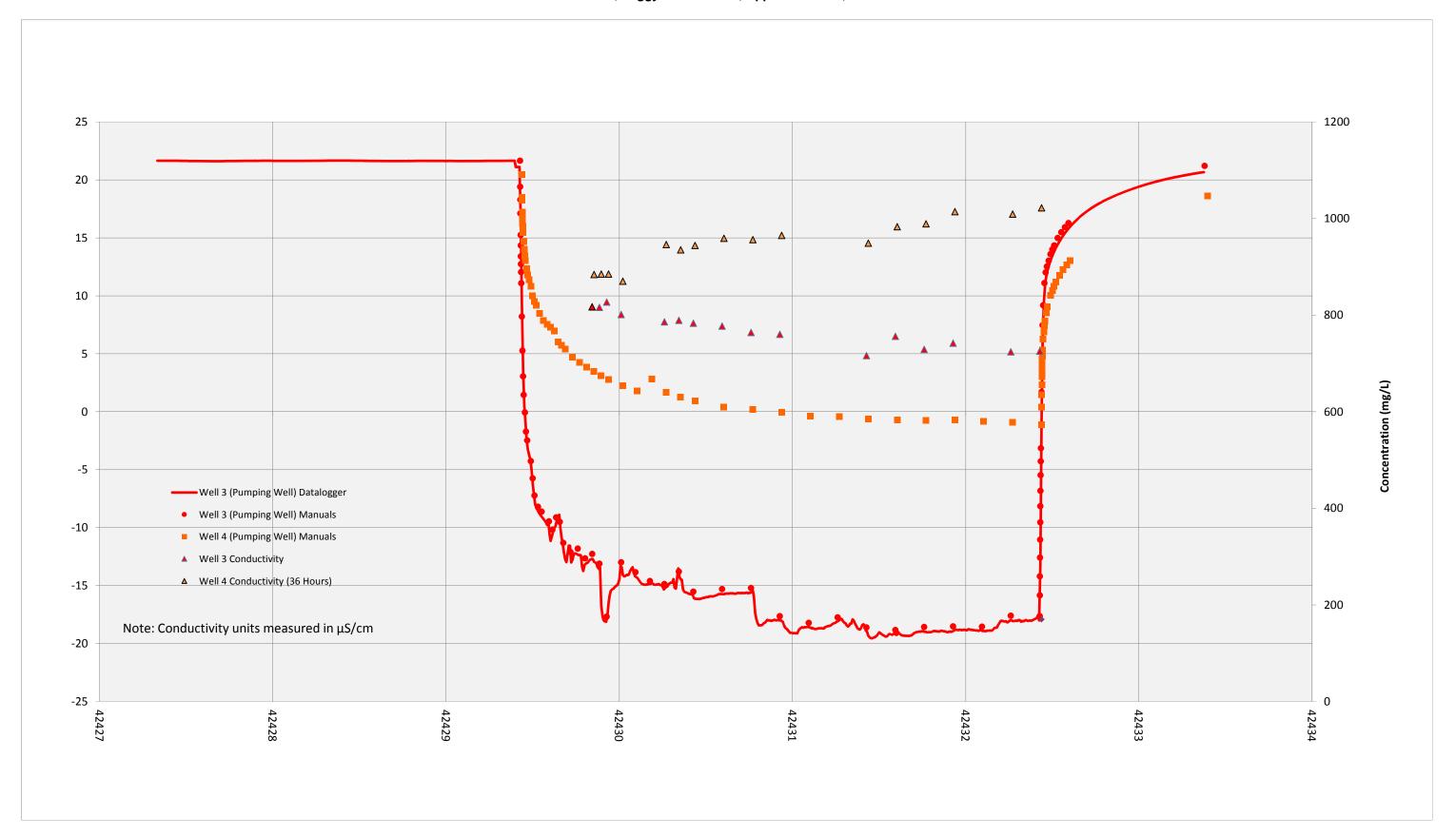
WELL #4 DATE Jan 28th, 2016

Time in	Step #1	Step #2	Step #3	Step#4	Rec
Minutes	3.1 gpm	6 gpm	9 gpm		
0.1	5.94	11.4	19.7		31.31
1	7.69	12.05	20.41		29.24
2	8.08	12.51	20.69		27.33
3	8.02	12.88	21.12		25.55
4	8.13	13.29	21.49		24.07
5	8.22	13.61	21.86		22.8
6	8.3	13.95	22.25		21.55
7	8.46	14.24	22.71		20.54
8	8.62	14.59	23.17		19.6
9	8.7	14.94	23.6		18.77
10	8.76	15.2	24.05		18.06
15	9.08	16.25	26.29		15.47
20	9.68	16.88	27.14		13.84
25	10.05	17.18	28		12.87
30	10.44	17.91	28.6		12.05
40	10.89	18.45	29.81		10.97
50	11.15	18.49	30.62		10.22
60	11.4	19.7	31.31		9.7

Well Depth	93 m	305 ft		
Pump Setting	90 m	295 ft		
Draw Down Step #1	5.46 m	18 ft	14 lpm	3.1 gpm
Draw Down Step #2	8.3 m	27 ft	27 lpm	6 gpm
Draw Down Step #3	11.61 m	38 ft	41 lpm	9 gpm
Total draw Down after 3 steps	25.57 m	83 ft		
Recovery in one hr Percent of total draw down	21.61 m 85%	71 ft		


Pump model 1 hp, 18 gpm series

Appendix 5 Long Term Pump Test Plots


FIGURE 101

MEASURED GROUNDWATER ELEVATIONS Datalogger and Manual Measurements

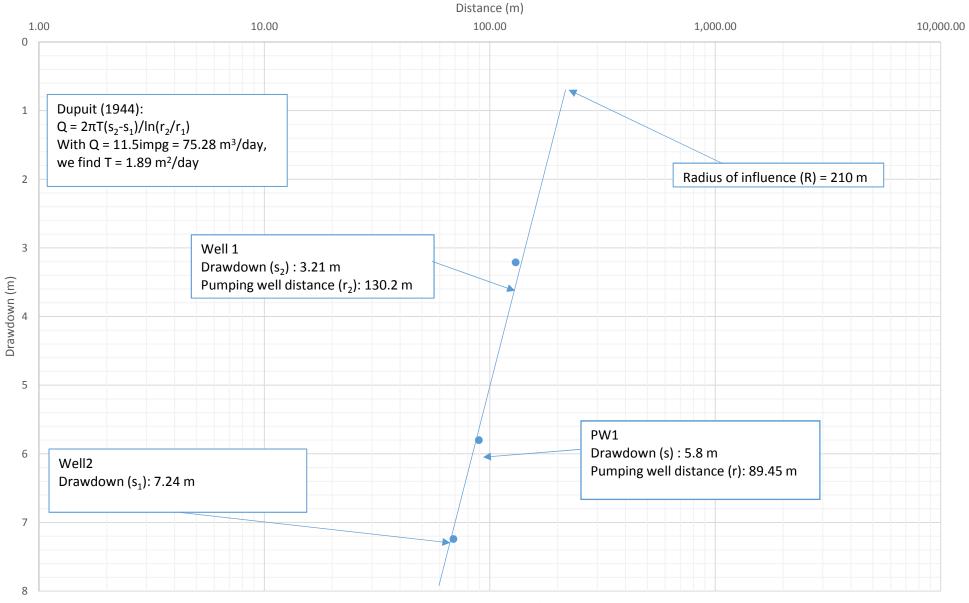
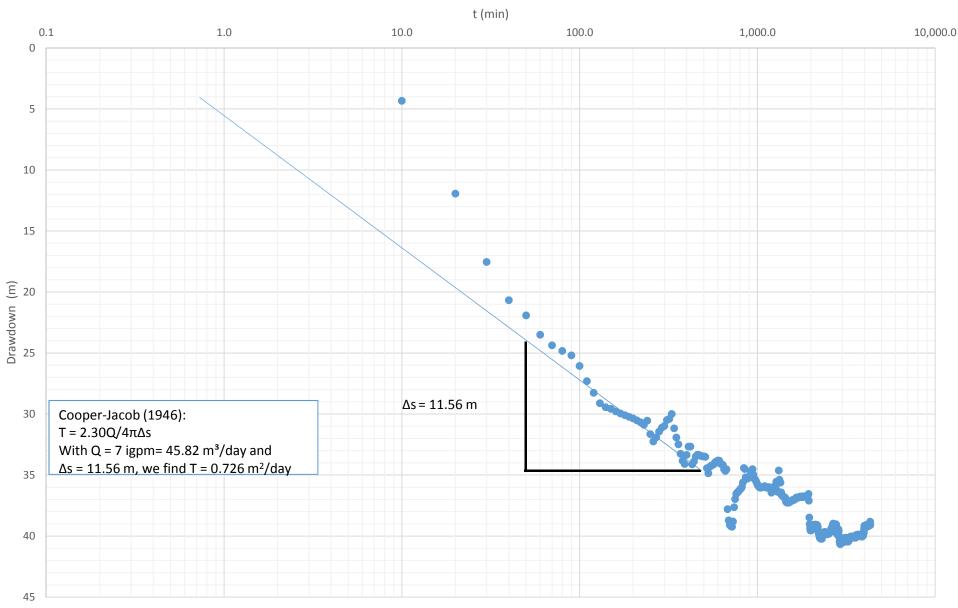
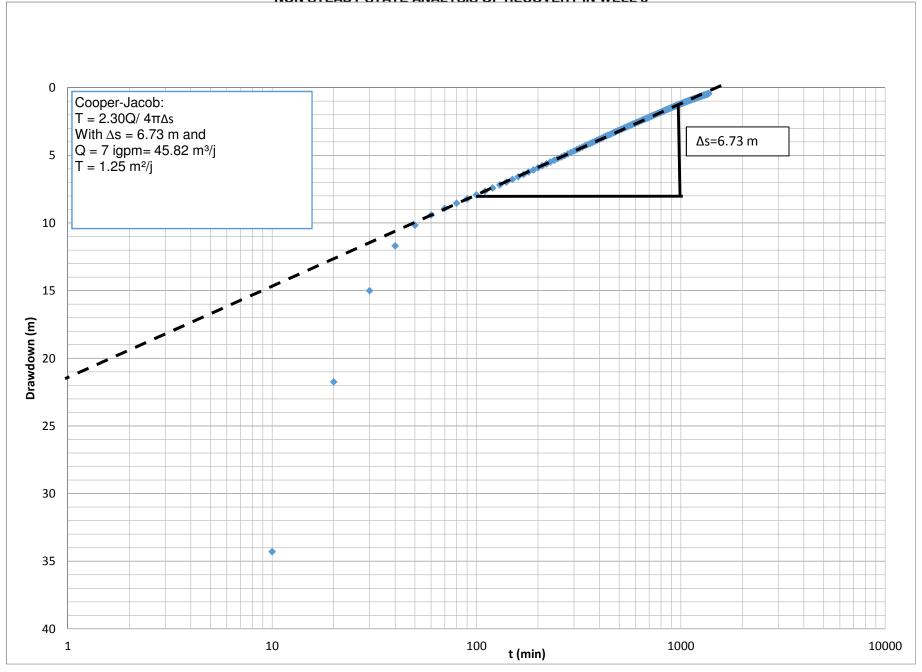


FIGURE 102 MEASURED GROUNDWATER ELEVATIONS AND SELECT CHEMISTRY

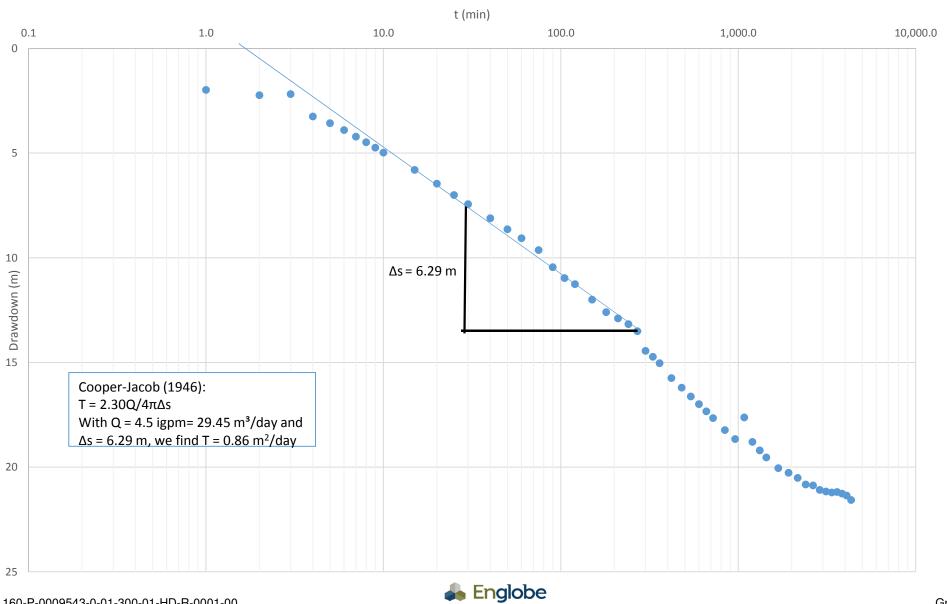


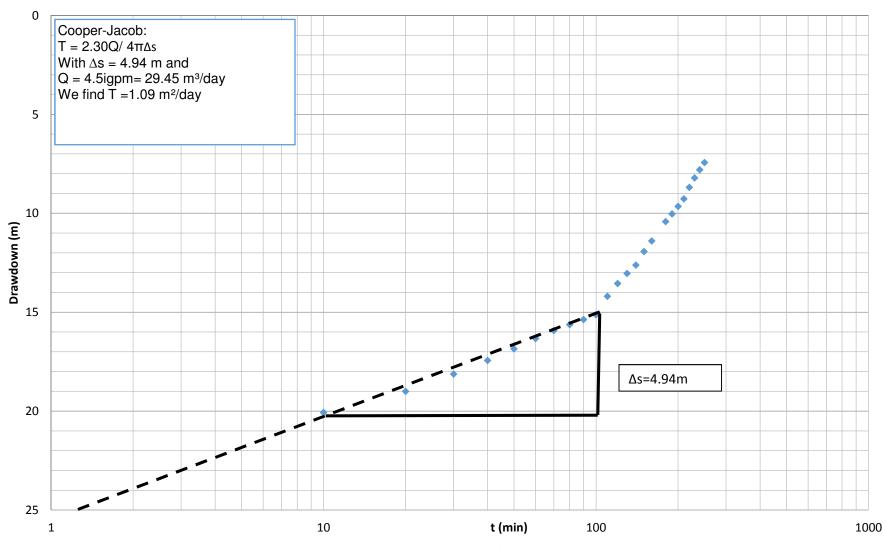
STEADY STATE ANALYSIS (DUPUIT)



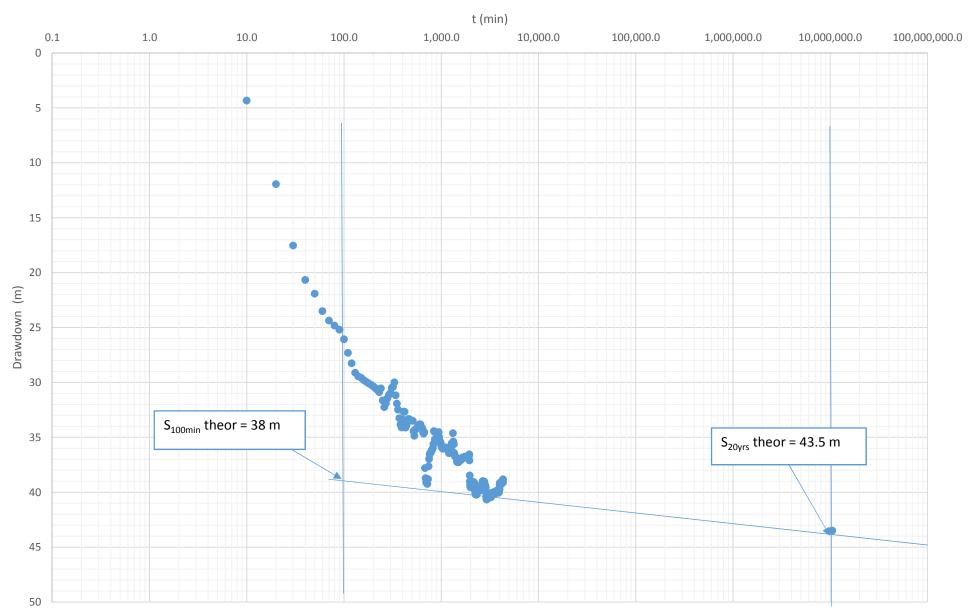
NON STEADY STATE ANALYSIS OF DRAWDOWN IN WELL 3

GRAPH 103

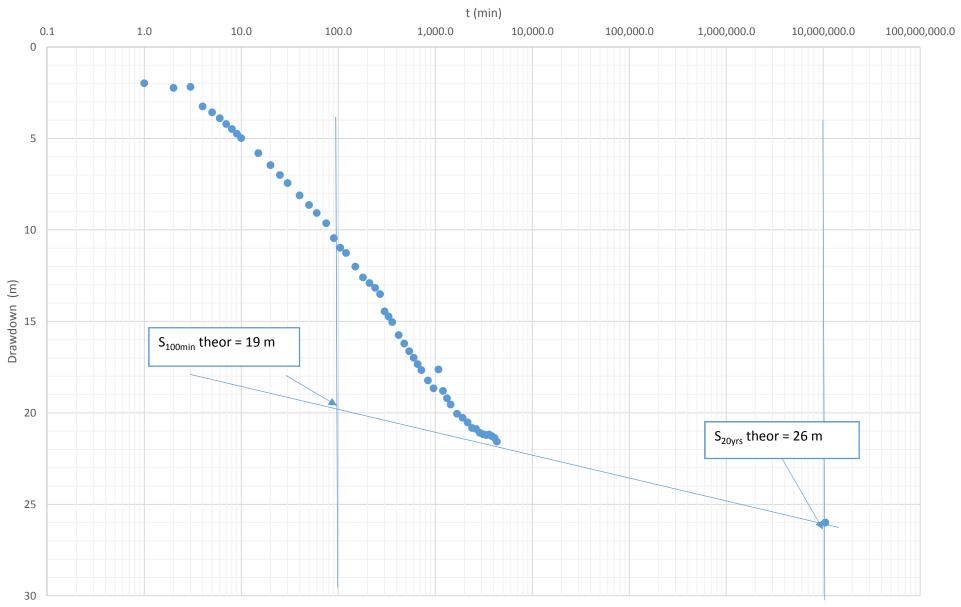

NON STEADY STATE ANALYSIS OF RECOVERY IN WELL 3


NON STEADY STATE ANALYSIS OF DRAWDOWN - WELL 4

Level 2 Groundwater Assessment


Lot B, Peggy's Cove Road, Upper Tantallon, N.S.

NON STEADY STATE ANALYSIS OF RECOVERY - WELL 4


SAFE WELL YIELD - WELL 3

GRAPH 107

SAFE WELL YIELD - WELL 4

Level 2 Groundwater Assessment Lot B, Peggy's Cove Road, Upper Tantallon, N.S.

Appendix 6 Long Term Pump Test Data

Well #3 Long Term test DATE February 29th to March 3rd, 2016

Time	Level(m)	Meter	Rate	Cond	Temp	Well 2]
0.1	4.53	51630				5	
1	6.78						
2	7.89						
3	9.07						
4	0.07						
5	10.94						
6	11.84						
7	12.77						
8	13.45						
9	14.14						
10	15.1	1697.8	6.8				
15	17.98	1730	6.4				
20	20.92	1766	7.2				
25 25	23.14	1802.7	7.2				
30	24.73	1838.1	7.3 7.1				
40 50	26.25	1905.3	6.7 7.1				
50 60	27.9	1976.2	7.1				
60 90	28.66 30.45	2041.8 2245.6	6.6 6.8				
105	31.93	2355	7.3				
120	33.41	2464.4	7.3				
150	34.39	2681.2	7.2				
180	34.81	2894.1	7.1				
240	35.64	3105.7	7.1				
270	36.36	3530.1	7.1				
300	35.31	3732	6.7				
330	35.68	3933.1	6.7				
360	37.5	4149.1	7.2				
420	38.3	4576.2	7.1				
480	38	4996	7				
540	38.83	5421.5	7.1	047	0.4		
600	38.45	5837.4	6.9	817	9.1		
660	39.3	6258	7	816	10		
720	43.86	6729.5	7.85	827	10.1		
840	39.18	7569.7	7	801	9.2		
960	40.03	8402.2	6.9				and the second the second tendent of the sec
1080	40.79	9244.5	7	700	0.4		problems with generator during night - carburetor freezing
1200	41.05	60086.9	7	786	9.1		unit running sporatically affecting flow rate
1320	39.98	912.7	6.9	789	8.5	4440	
1440	41.71	1755.8	7	783	9.6	14.13	
1680	41.49	3440.5	7	777	9.5		
1920	41.4	5104.5	6.9	764	10.5		
2160	43.83	6851.3	7.3	760	10.4		
2400	44.4	8609.5	7.3			45 47	
2640	43.93	70353.9	7.3	740	44.0	15.47	
2880	44.79	2096	7.3	716	11.3	45.00	
3120	45.02	3856.7	7.3	756	10.3	15.62	harmonia franco 0000 min to 0040
3360	44.76	5610.1	7.3	729	10.5		heavy rain from 3360 min to 3840 min
3600	44.7	7359	7.3	742	10.4		
3840	44.73	9105.6	7.3	704			
4080	43.78	80839.2	7.2	724	9.1	45.05	attal and 0.4 m Ol
4320	43.83	2561.2	7.2	725	8	15.85	stick up 0.4 m GL

54.8 m 180 ft

Pump Setting Puymp Model Webtrol 1 hp, 18 gpm series Recovery: Well #3

Recovery . v	VCII πO		
Time	Level(m)	obs #2	
0	43.83	15.85	
1	42.02		
2	40.39		
3	38.77		
4	37.22		
5	35.72		
6	34.33		
7	33		
8	31.66		
9	30.46		
10	29.33		
15	24.49		
20	21.07		
25	18.72		
30	17	15.81	
40	15.08		
50	14.17		
60	13.65		
75	13.15		
90	12.59		
105	12.18		
120	11.84		
150	11.2		
180	10.7		
210	10.27		
240	9.91	13.43	
1371	4.98	7.33	

Well #4 Long Term test $\ \ comp\ DATE$ February 29th to March 3rd, 2016

Time	Level(m)	Meter	Rate	Cond	Temp]
0.1	5.87	45125				
1	7.85					
2	8.1					
3	8.05					
4	9.12					
5	9.44					
6	9.77					
7	10.08					
8	10.35					
9	10.61					
10	10.85	5178.8	5.3			
15	11.67	5203.8	5.7			
20	12.33	5229	5.7			
25	12.87	5254.5	5.1			
30	13.31	5279.5	5			
40	13.98	5330	5			
50	14.51	5380	5			
60	14.94	5430	5			
75	15.5	5504.5	5			
90	16.32	5583	5.2			
105	16.84	5661.9	5.3			
120	17.13	5739.5	5.2			
150	17.87	5895.7	5.2			
180	18.47	6051.3	5.2			
210	18.77	6205.2	5.1			
240	19.04	6355.9	5			
270	19.38	6506	5			
300	20.32	6666.1	5.3			
330	20.6	6824.2	5.3			
360	20.91	6983	5.3			
420	21.62	7303	5.3			
480	22.08	7624.2	5.35			
540	22.5	7944	5.3			
600	22.86	8263.2	5.3	884	9.8	
660	23.21	8582.8	5.3	885	9.6	
720	23.53	8903.4	5.3	885	9.8	
840	24.1	9544.5	5.3	870	10	
960	24.53	20184	5.3			
1080	23.5	697	4.3			generator problems - carburetor icing.
1200	24.67	1324.5	5.2	946	9.1	unit down for 24 min, water level recovered to 19 m
1320	25.07	1950	5.2	935	9.2	
1440	25.41	2548.2	5.2	944	9.6	
1680	25.92	2844.8	5.3	959	9.2	
1920	26.14	5106	5.25	956	9.1	
2160	26.39	6363.5	5.2	965	9.1	
2400	26.7	7629.9	5.3			
2640	26.75	8899.6	5.3			
2880	26.96	30172.3	5.3	949	10.6	
3120	27.04	1451.8	5.3	983	10.2	
3360	27.08	2730.4	5.3	989	10.4	heavy rain event from 3360 min to 3840 min
3600	27.06	4001.2	5.3	1014	10	
3840	27.14	5279.5	5.3			
4080	27.23	6564.8	5.35	1009	9.5	stick up 0.63 GL
4320	27.44	7837	5.3	1022	8.5	

(300 ft) 91 m

Pump setting Pump Model Goulds 1Hp, 10 gpm series

Well #4	Recovery	
Time	Level(m)	
0	27.44	
1	25.94	
2	24.87	
3	24	
4	23.31	
5	22.72	
6	22.2	
7	21.8	
8	21.5	
9	21.24	
10	21	
15	20.07	
20	19.42	
25	18.91	
30	18.49	
40	17.8	
50	17.27	
60		
75	16.29	
90	15.9	
105	15.52	
120	15.14	
150	14.56	
180	14.08	
210	13.67	
240	13.31	
1380	7.73	

Appendix 7 Analytical Results

TABLE 1: GENERAL CHEMISTRY in Groundwater

Client: Joe Arab

Site Location: Upper Tantallon, NS Englobe Project No.: 20814

				SAMPLE ID																				
PARAMETER	UNITS	CCME Drinking Water	NSE Tier 1 EQS ²	WE	ELL 3		WELL 4			W1 SIFER)		W2 N MAPLE)	PW3		(FLEMING)	PW4	(WHITMAN)	PW5	(DUBEC)	DW1		(EDWARDS)	F	P1
		Guidelines ¹	223	36 hr	72 hr		hr	72 hr	Pre-Pump	End Pump	Pre-Pump	End Pump	Pre-P		End Pump	Pre-Pump	End Pump	Pre-Pump	End Pump	Pre-Pump		Pump	Pre-Pump	End Pump
5 / /// O.B	0511/400	0 100 1	NO	1-Mar-16	3-Mar-16	1-Mar-16	Lab Dup	3-Mar-16	18-Jan-16	4-Mar-16	18-Jan-16	4-Mar-16	18-Jan-16	Lab Dup	4-Mar-16	19-Jan-16	4-Mar-16	19-Jan-16	4-Mar-16	18-Jan-16	3-Mar-16	Lab Dup	18-Jan-16	3-Mar-16
Escherichia Coli	CFU/100ml	0 per 100 ml	NG	0	0	0	-	0	-	-	-	-	-	-	-	-	-	-	-	0	-	-	-	-
Total Coliforms	CFU/100ml	0 per 100 ml	NG	0	0	2	-	0	-	-	- 0.47	-	-	-	-	-	-	-	-	240	- 0.400	-	-	-
Anion Sum	me/L	NG	NG	4.10	3.94	5.36	-	5.43	1.35	1.31	9.67	9.46	1.00	-	1.08	1.52	1.88	2.60	2.09	0.670	0.690		0.200	0.140
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	25	24	29	-	27	36	40	24	24	32	-	33	40	51	37	38	9.7	8.5		<1.0	<1.0
Bromide (Br)		NG	NG	-	<1.0	-	-	<1.0	-	-	-	-	-	-	-	-	-	- 470	-	- 47	-	-	-	-
Calculated TDS	mg/L	< 500 (AO)	NG	250	240	310	-	320	87	81	610	540	74	-	88	98	120	170	140	47	47		20	11
Carb. Alkalinity (calc. as CaCO3)	mg/L	NG	NG	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0
Cation Sum	me/L	NG	NG	3.74	3.59	4.88	-	5.24	1.29	1.19	11.8	9.42	0.990	-	1.34	1.77	1.90	2.30	1.91	0.690	0.670		0.650	0.330
Colour	TCU	<u><</u> 15 (AO)	NG	<5.0	<5.0	6.0	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	24	<5.0	<5.0	<5.0	<5.0	<5.0	200	220
Conductivity	uS/cm	NG	NG	440	420	590	-	610	130	120	1100	1100	91	-	100	140	190	240	220	71	76		63	51
Dissolved Chloride (CI)	mg/L	< 250 (AO)	250	120	120	160	-	170	18	14	310	310	7.5	7.2	8.7	23	28	57	39	13	14	15	6.9	4.9
Dissolved Fluoride (F)		1.5 (MAC)	NG	-	0.28	-	-	0.31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dissolved Sulphate (SO4)	mg/L	< 500 (AO)	NG	6.8	6.7	6.9	-	7.5	5.2	4.7	15	12	4.5	4.6	5.4	3.0	3.6	11	9.7	5.1	5.5	5.5	<2.0	<2.0
Hardness (CaCO3)	mg/L	NG	NG	130	120	160	-	170	43	40	290	260	29	-	30	42	53	<1.0	<1.0	13	13		15	6.2
Ion Balance (% Difference)	%	NG	NG	4.59	4.65	4.69	-	1.78	2.27	4.80	10.1	0.210	0.500	-	10.7	7.60	0.530	6.12	4.50	1.47	1.47		52.9	40.4
Langelier Index (@ 20C)	N/A	NG	NG	-1.58	-1.66	-1.22	-	-1.35	-1.43	-1.43	-1.50	-1.64	-1.74	-	-1.74	-1.18	-0.915	NC	NC	-3.37	-3.59		NC	NC
Langelier Index (@ 4C)	N/A	NG	NG	-1.83	-1.91	-1.47	-	-1.60	-1.68	-1.68	-1.74	-1.88	-1.99	-	-1.99	-1.43	-1.17	NC	NC	-3.63	-3.85		NC	NC
Nitrate (N)	mg/L	10 (MAC)	NG	<0.050	<0.050	<0.050	-	<0.050	0.34	0.36	0.27	0.86	0.47	-	0.61	<0.050	<0.050	0.13	0.14	<0.050	<0.050		0.10	<0.050
Nitrate + Nitrite	mg/L	NG	NG	<0.050	<0.050	<0.050	-	<0.050	0.34	0.36	0.27	0.86	0.47	0.48	0.61	<0.050	<0.050	0.13	0.14	<0.050	<0.050	<0.050	0.10	<0.050
Nitrite (N)	mg/L	3.2 (MAC)	NG	<0.010	<0.010	<0.010	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Nitrogen (Ammonia Nitrogen)	mg/L	NG	NG	0.32	0.23	0.087	-	0.12	0.39	<0.050	0.34	<0.050	0.10	0.090	<0.050	0.074	<0.050	0.23	<0.050	1.1	0.18		0.99	0.31
Orthophosphate (P)	mg/L	NG	NG	0.36	0.38	0.30	-	0.27	0.12	0.092	0.011	0.012	0.28	0.28	0.20	0.018	0.042	0.36	0.37	0.012	0.010	0.010	0.031	0.012
pH	pН	6.5-8.5	NG	6.80	6.75	7.00	-	6.90	7.20	7.18	6.67	6.57	7.15	-	7.13	7.44	7.51	7.30	7.23	6.38	6.22		4.06	4.11
Reactive Silica (SiO2)	mg/L	NG	NG	25	27	22	-	23	14	13	7.9	11	20	19	19	9.1	14	22	22	8.6	7.5	8.1	1.5	0.71
Saturation pH (@ 20C)	N/A	NG	NG	8.38	8.41	8.22	-	8.25	8.63	8.60	8.16	8.21	8.89	-	8.87	8.61	8.42	NC	NC	9.76	9.81		NC	NC
Saturation pH (@ 4C)	N/A	NG	NG	8.63	8.66	8.47	-	8.49	8.88	8.85	8.41	8.45	9.14	-	9.12	8.87	8.67	NC	NC	10.0	10.1		NC	NC
Total Alkalinity (Total as CaCO3)	mg/L	NG	NG	25	24	29	-	27	36	40	24	24	32	33	33	40	51	37	38	9.7	8.5	8.9	<5.0	<5.0
Total Organic Carbon (C)	mg/L	NG	NG	<0.50	<0.50	<0.50	-	<0.50	0.62	<0.50	2.3	1.4	0.88	0.84	0.99	0.68	0.61	<0.50	<0.50	2.4	0.79		22 (1)	<50 (1)
Turbidity	NTU	1 (MAC)	NG	0.58	<0.10	0.83	0.86	0.73	0.64	2.4	180	160	2.9	2.6	47	32	29	2.1	1.2	0.16	0.45		>1000	>1000

Notes:

AO - Aesthetic Objective

MAC - Maximum Acceptable Concentration NG - no guideline

- exceeds CCME drinking water guidelines

value -exceeds NSE EQS

value -exceeds both CCME and NSE EQS value - wetland surface water sample

¹Criteria taken from the Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for Community (Drinking) Water (Update 2014)

² Criteria taken from the 2013 Nova Scotia Environment (NSE) Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil

⁽¹⁾ Analysis performed on decanted sample due to sediment.

TABLE 2: TOTAL METALS in Groundwater Client: Joe Arab Site Location: Upper Tantallon, NS Englobe Project No.: 20814

PARAMETER	UNITS	CCME Drinking Water	NSE Tier 1 EQS ²	WE	LL3	WE	ELL4	PW1		(PULSIFER)	PW2	(ACADIAN PLE)		W3 MING)	PW4	(WHITMAN)	PW5	(DUBEC)	DW1	(EDWARDS)	Р	1
		Guidelines ¹		36 hr 1-Mar-16	72 hr 3-Mar-16	36 hr 1-Mar-16	72 hr 3-Mar-16	Pre- 18-Jan-16	Pump Lab Dup	End Pump 4-Mar-16	Pre-Pump 18-Jan-16	End Pump 4-Mar-16	Pre-Pump 18-Jan-16	End Pump 4-Mar-16	Pre-Pump 19-Jan-16	End Pump 4-Mar-16	Pre-Pump 19-Jan-16	End Pump 4-Mar-16	Pre-Pump 18-Jan-16	End Pump 3-Mar-16	Pre-Pump 18-Jan-16	End Pump 3-Mar-16
Aluminum	μg/L	100	NG	7.2	6.0	7.9	6.2	7.6	6.6	7.7	89	720	27	230	44	25	5.9	6.5	89	110	2500	840
Antimony	μg/L	6 (MAC)	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	<1.0
Arsenic	μg/L	10 (MAC)	10	5.1	5.7	3.8	3.5	5.2	5.3	5.0	2.1	1.1	<u> 18</u>	91	3.8	8.5	9.3	9.8	<1.0	<1.0	2.5	<1.0
Barium	μg/L	1000 (MAC)	1000	370	340	320	330	42	43	35	280	310	10	83	9.8	13	<1.0	<1.0	38	36	43	15
Beryllium	μg/L	NG	4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bismuth	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	μg/L	5000 (MAC)	5000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cadmium	μg/L	5 (MAC)	5	0.021	0.010	0.035	0.026	0.017	0.015	< 0.010	0.30	0.78	0.043	0.47	< 0.010	< 0.010	< 0.010	<0.010	0.034	0.031	0.35	0.12
Calcium	μg/L	NG	NG	42000	40000	54000	57000	14000	14000	13000	90000	79000	8500	8800	13000	17000	<100	<100	3700	3700	3600	1400
Chromium	μg/L	50 (MAC)	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.1	<1.0	1.1	<1.0	<1.0	<1.0	<1.0	1.4	<1.0	15	1.5
Cobalt	μg/L	NG	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	0.56	< 0.40	2.7	< 0.40	< 0.40	< 0.40	<0.40	<0.40	<0.40	0.63	< 0.40
Copper	μg/L	≤1000 (A0)	NG	<2.0	<2.0	<2.0	<2.0	160	160	73	25	33	<2.0	11	15	5.5	4.3	2.3	3.3	3.5	52	17
Iron	μg/L	≤300 (AO)	NG	<50	<50	160	120	60	60	250	59000	15000	1000	9600	9200	4000	150	100	<50	<50	2200	660
Lead	μg/L	10 (MAC)	10	<0.50	<0.50	<0.50	<0.50	1.4	1.4	0.58	4.2	7.8	3.0	5.5	1.5	1.1	<0.50	<0.50	<0.50	<0.50	<u>14</u>	4.2
Magnesium	μg/L	NG	NG	4700	4500	5800	6300	1800	1800	1700	16000	15000	1900	2100	2200	2700	<100	<100	930	950	1400	660
Manganese	μg/L	≤50 (A0)	NG	120	110	300	260	5.2	5.4	15	1300	570	120	1400	87	96	<2.0	<2.0	15	16	39	13
Molybdenum	μg/L	NG	70	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	μg/L	NG	100	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	4.1	<2.0	5.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	11	<2.0
Phosphorus	μg/L	NG	NG	380	390	340	330	180	170	140	190	120	390	2100	220	350	370	380	<100	<100	490	170
Potassium	μg/L	NG	NG	2900	2700	3900	4000	1100	1100	940	3500	3400	900	950	1100	1200	380	680	1600	1800	360	180
Selenium	μg/L	10 (MAC)	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.7	<1.0
Silver	μg/L	NG	100	<0.10	<0.10	<0.10	< 0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	0.24	<0.10
Sodium	μg/L	≤ 200,000 (A0)	NG	26000	26000	37000	41000	8400	8400	8100	87000	83000	7900	8300	13000	15000	52000	43000	7100	8100	2500	1700
Strontium	μg/L	NG	4400	490	460	670	740	76	75	66	540	470	32	39	49	62	<2.0	<2.0	17	17	29	11
Thallium	μg/L	NG	2	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	<0.10	0.23	< 0.10	< 0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	< 0.10
Tin	μg/L	NG	4400	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	12	4.8
Titanium	μg/L	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	5.7	44	2.2	12	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	53	17
Uranium	μg/L	20 (MAC)	20	2.3	2.2	4.1	4.4	3.9	3.8	4.8	14	8.5	4.4	34	2.9	3.7	0.63	1.1	0.14	0.16	3.9	1.2
Vanadium	μg/L	NG	6.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	4.2	<2.0
Zinc	μg/L	≤5000 (AO)	5000	<5.0	<5.0	<5.0	<5.0	21	20	14	17	43	8.7	66	5.5	19	13	14	<5.0	<5.0	110	42

Notes

AO - Aesthetic Objective

MAC - Maximum Acceptable Concentration

NG - no guideline

value - exceeds CCME drinking water guidelines
value - exceeds NSE EQS
value - exceeds both CCME and NSE EQS
value - wetland surface water sample

¹Criteria taken from the Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for Community (Drinking) Water (Update 2014)

² Criteria taken from the 2013 Nova Scotia Environment (NSE) Tier 1 Environmental Quality Standards (EQS) for potable water at a residential site with coarse-grained soil

TABLE 3: VOCs in Groundwater

Client: Joe Arab

Site Location: Upper Tantallon, NS Englobe Project No.: 20814

			Vater Quality	NSE Tier 1		SAMPLE ID	
PARAMETER	UNITS	Guid	elines 1	EQS ²	WELL	3 72hr	WELL 4 72hr
		MAC	AO (or OG)		3-Mar-16	Lab Dup	3-Mar-16
1,2-Dichlorobenzene	ug/L	20	< 3	200	<0.50	<0.50	<0.50
1,3-Dichlorobenzene	ug/L	NG	NG	59	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	ug/L	5	< 1	5	<1.0	<1.0	<1.0
Chlorobenzene	μg/L	NG	< 30	14	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	μg/L	NG	NG	200	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	μg/L	NG	NG	1	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	μg/L	NG	NG	5	<1.0	<1.0	<1.0
1,1-Dichloroethane	μg/L	NG	NG	5	<2.0	<2.0	<2.0
1,1-Dichloroethylene	μg/L	14	NG	14	<0.50	<0.50	<0.50
1,2-Dichloroethane	μg/L	5	NG	5	<1.0	<1.0	<1.0
1,2-Dichloropropane	μg/L	NG	NG	5	<0.50	<0.50	<0.50
Benzene	μg/L	5	NG	5	<1.0	<1.0	<1.0
Bromodichloromethane	μg/L		NG	100	<1.0	<1.0	<1.0
Dibromochloromethane	μg/L	100 ²	NG	100	<1.0	<1.0	<1.0
Bromoform	μg/L	100	NG	100	<0.50	<0.50	<0.50
Chloroform	μg/L	1	NG	3	<0.50	<0.50	<0.50
Bromomethane	μg/L	NG	NG	0.89	<8.0	<8.0	<8.0
Carbon Tetrachloride	μg/L	2	NG	0.56	<1.0	<1.0	<1.0
Chloroethane	μg/L	NG	NG	NG	<8.0	<8.0	<8.0
Chloromethane	μg/L	NG	NG	38	<0.50	<0.50	<0.50
cis-1,2-Dichloroethylene	μg/L	NG	NG	1.6	<0.50	<0.50	<0.50
cis-1,3-Dichloropropene	μg/L	NG	NG	NG	<1.0	<1.0	<1.0
Ethylbenzene	μg/L	NG	< 2.4	2.4	<1.0	<1.0	<1.0
Ethylene Dibromide	μg/L	NG	NG	0.2	<0.20	<0.20	<0.20
Methylene Chloride(Dichloromethane)	μg/L	50	NG	50	<3.0	<3.0	<3.0
o-Xylene	μg/L	NG	< 300	300	<1.0	<1.0	<1.0
p+m-Xylene	μg/L	NG	< 300	300	<2.0	<2.0	<2.0
Styrene	μg/L	NG	NG	100	<1.0	<1.0	<1.0
Tetrachloroethylene	μg/L	30	NG	30	<1.0	<1.0	<1.0
Toluene	μg/L	NG	< 24	24.0	<1.0	<1.0	1.1
trans-1,2-Dichloroethylene	μg/L	NG	NG	1.6	<0.50	<0.50	<0.50
trans-1,3-Dichloropropene	μg/L	NG	NG	NG	<0.50	<0.50	<0.50
Trichloroethylene	μg/L	5	NG	5	<1.0	<1.0	<1.0
Trichlorofluoromethane (FREON 11)	μg/L	NG	NG	NG	<8.0	<8.0	<8.0
Vinyl Chloride	μg/L	2	NG	1.1	<0.50	<0.50	<0.50

Notes:

AO - Aesthetic Objective

MAC - Maximum Acceptable Concentration

NG - no guideline

- exceeds CCME drinking water guidelines

<u>value</u> - exceeds NSE EQS

-exceeds both CCME and NSE EQS

¹Criteria taken from the 2010 Guidelines for Canadian Drinking Water Quality

 $^2 \\ Guideline for trihalomethanes$

NG - no guideline

MAC - Maximum Allowable Concentration

OG - Operational Guideline AO - Aesthetic Objective **Appendix 8** Laboratory Certificates

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/01/25

Report #: R3863764 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B609966
Received: 2016/01/18, 15:19
Sample Matrix: Drinking Wat

Sample Matrix: Drinking Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	4	N/A	2016/01/20	N/A	SM 22 4500-CO2 D
Alkalinity	4	N/A	2016/01/21	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	4	N/A	2016/01/21	ATL SOP 00014	SM 22 4500-Cl- E m
TC/EC Drinking Water CFU/100mL	1	N/A	2016/01/18	ATL SOP 00096	OMOE E3407 V5.2
Colour	4	N/A	2016/01/22	ATL SOP 00020	SM 22 2120C m
Conductance - water	4	N/A	2016/01/20	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	1	N/A	2016/01/20	ATL SOP 00048	SM 22 2340 B
Hardness (calculated as CaCO3)	3	N/A	2016/01/21	ATL SOP 00048	SM 22 2340 B
Metals Water Total MS	1	2016/01/19	2016/01/19	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	3	2016/01/20	2016/01/20	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	4	N/A	2016/01/22		Auto Calc.
Anion and Cation Sum	4	N/A	2016/01/22		Auto Calc.
Nitrogen Ammonia - water	4	N/A	2016/01/21	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	4	N/A	2016/01/22	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	4	N/A	2016/01/21	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	4	N/A	2016/01/22	ATL SOP 00018	ASTM D3867
pH (1)	4	N/A	2016/01/20	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	4	N/A	2016/01/21	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	4	N/A	2016/01/22	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	4	N/A	2016/01/22	ATL SOP 00049	Auto Calc.
Reactive Silica	4	N/A	2016/01/21	ATL SOP 00022	EPA 366.0 m
Sulphate	4	N/A	2016/01/21	ATL SOP 00023	EPA 375.4 R1978 m
Total Dissolved Solids (TDS calc)	4	N/A	2016/01/22		Auto Calc.
Organic carbon - Total (TOC) (2)	4	N/A	2016/01/21	ATL SOP 00037	SM 22 5310C m
Turbidity	4	N/A	2016/01/20	ATL SOP 00011	EPA 180.1 R2 m

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	1	N/A	2016/01/2	2 N/A	SM 22 4500-CO2 D

Attention: Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/01/25

Report #: R3863764 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B609966 Received: 2016/01/18, 15:19

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Alkalinity	1	N/A	2016/01/21	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	1	N/A	2016/01/21	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	1	N/A	2016/01/22	ATL SOP 00020	SM 22 2120C m
Conductance - water	1	N/A	2016/01/20	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	1	N/A	2016/01/21	ATL SOP 00048	SM 22 2340 B
Metals Water Total MS	1	2016/01/20	2016/01/21	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	1	N/A	2016/01/22		Auto Calc.
Anion and Cation Sum	1	N/A	2016/01/22		Auto Calc.
Nitrogen Ammonia - water	1	N/A	2016/01/21	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	1	N/A	2016/01/22	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	1	N/A	2016/01/21	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	1	N/A	2016/01/22	ATL SOP 00018	ASTM D3867
pH (1)	1	N/A	2016/01/22	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	1	N/A	2016/01/21	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	1	N/A	2016/01/22	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	1	N/A	2016/01/22	ATL SOP 00049	Auto Calc.
Reactive Silica	1	N/A	2016/01/21	ATL SOP 00022	EPA 366.0 m
Sulphate	1	N/A	2016/01/21	ATL SOP 00023	EPA 375.4 R1978 m
Total Dissolved Solids (TDS calc)	1	N/A	2016/01/22		Auto Calc.
Organic carbon - Total (TOC) (2)	1	N/A	2016/01/21	ATL SOP 00037	SM 22 5310C m
Turbidity	1	N/A	2016/01/20	ATL SOP 00011	EPA 180.1 R2 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

⁽¹⁾ The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

⁽²⁾ TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/01/25

Report #: R3863764 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B609966 Received: 2016/01/18, 15:19

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (DRINKING WATER)

Maxxam ID		BRF057		BRF059	BRF059		BRF060			
Sampling Date		2016/01/18 13:00		2016/01/18	2016/01/18		2016/01/18			
COC Number		B 159535		B 159535	B 159535		B 159535			
	UNITS	DW1	QC Batch	PW1	PW1 Lab-Dup	RDL	PW2	RDL	QC Batch	MDL
Calculated Parameters										
Anion Sum	me/L	0.670	4348166	1.35		N/A	9.67	N/A	4348166	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	9.7	4348162	36		1.0	24	1.0	4348162	0.20
Calculated TDS	mg/L	47	4348171	87		1.0	610	1.0	4348171	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	4348162	<1.0		1.0	<1.0	1.0	4348162	0.20
Cation Sum	me/L	0.690	4348166	1.29		N/A	11.8	N/A	4348166	N/A
Hardness (CaCO3)	mg/L	13	4348164	43		1.0	290	1.0	4348164	1.0
Ion Balance (% Difference)	%	1.47	4348165	2.27		N/A	10.1	N/A	4348165	N/A
Langelier Index (@ 20C)	N/A	-3.37	4348169	-1.43			-1.50		4348169	N/A
Langelier Index (@ 4C)	N/A	-3.63	4348170	-1.68			-1.74		4348170	N/A
Nitrate (N)	mg/L	<0.050	4348167	0.34		0.050	0.27	0.050	4348167	N/A
Saturation pH (@ 20C)	N/A	9.76	4348169	8.63			8.16		4348169	N/A
Saturation pH (@ 4C)	N/A	10.0	4348170	8.88			8.41		4348170	N/A
Inorganics										
Total Alkalinity (Total as CaCO3)	mg/L	9.7	4351041	36		5.0	24	5.0	4351041	N/A
Dissolved Chloride (Cl)	mg/L	13	4351046	18		1.0	310	5.0	4351046	N/A
Colour	TCU	<5.0	4351052	<5.0		5.0	<5.0	5.0	4351052	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	4351056	0.34		0.050	0.27	0.050	4351056	N/A
Nitrite (N)	mg/L	<0.010	4351057	<0.010		0.010	<0.010	0.010	4351057	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	1.1	4352974	0.39		0.050	0.34	0.050	4352974	N/A
Total Organic Carbon (C)	mg/L	2.4	4352827	0.62		0.50	2.3	0.50	4352827	N/A
Orthophosphate (P)	mg/L	0.012	4351053	0.12		0.010	0.011	0.010	4351053	N/A
рН	рН	6.38	4350987	7.20		N/A	6.67	N/A	4350987	N/A
Reactive Silica (SiO2)	mg/L	8.6	4351050	14		0.50	7.9	0.50	4351050	N/A
Dissolved Sulphate (SO4)	mg/L	5.1	4351048	5.2		2.0	15	2.0	4351048	N/A
Turbidity	NTU	0.16	4351045	0.64		0.10	180	1.0	4351045	0.10
Conductivity	uS/cm	71	4350989	130		1.0	1100	1.0	4350989	N/A
Metals			•							
Total Aluminum (Al)	ug/L	89	4349397	7.6	6.6	5.0	89	5.0	4350994	N/A
Total Antimony (Sb)	ug/L	<1.0	4349397	<1.0	<1.0	1.0	<1.0	1.0	4350994	N/A
Total Arsenic (As)	ug/L	<1.0	4349397	5.2	5.3	1.0	2.1	1.0	4350994	N/A
Total Barium (Ba)	ug/L	38	4349397	42	43	1.0	280	1.0	4350994	N/A
Total Beryllium (Be)	ug/L	<1.0	4349397	<1.0	<1.0	1.0	<1.0	1.0	4350994	N/A
Total Bismuth (Bi)	ug/L	<2.0	4349397	<2.0	<2.0	2.0	<2.0	2.0	4350994	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (DRINKING WATER)

Maxxam ID		BRF057		BRF059	BRF059		BRF060			
Sampling Date		2016/01/18 13:00		2016/01/18	2016/01/18		2016/01/18			
COC Number		B 159535		B 159535	B 159535		B 159535			
	UNITS	DW1	QC Batch	PW1	PW1 Lab-Dup	RDL	PW2	RDL	QC Batch	MDL
Total Boron (B)	ug/L	<50	4349397	<50	<50	50	<50	50	4350994	N/A
Total Cadmium (Cd)	ug/L	0.034	4349397	0.017	0.015	0.010	0.30	0.010	4350994	N/A
Total Calcium (Ca)	ug/L	3700	4349397	14000	14000	100	90000	100	4350994	N/A
Total Chromium (Cr)	ug/L	1.4	4349397	<1.0	<1.0	1.0	<1.0	1.0	4350994	N/A
Total Cobalt (Co)	ug/L	<0.40	4349397	<0.40	<0.40	0.40	<0.40	0.40	4350994	N/A
Total Copper (Cu)	ug/L	3.3	4349397	160	160	2.0	25	2.0	4350994	N/A
Total Iron (Fe)	ug/L	<50	4349397	60	60	50	59000	50	4350994	N/A
Total Lead (Pb)	ug/L	<0.50	4349397	1.4	1.4	0.50	4.2	0.50	4350994	N/A
Total Magnesium (Mg)	ug/L	930	4349397	1800	1800	100	16000	100	4350994	N/A
Total Manganese (Mn)	ug/L	15	4349397	5.2	5.4	2.0	1300	2.0	4350994	N/A
Total Molybdenum (Mo)	ug/L	<2.0	4349397	<2.0	<2.0	2.0	<2.0	2.0	4350994	N/A
Total Nickel (Ni)	ug/L	<2.0	4349397	<2.0	<2.0	2.0	<2.0	2.0	4350994	N/A
Total Phosphorus (P)	ug/L	<100	4349397	180	170	100	190	100	4350994	N/A
Total Potassium (K)	ug/L	1600	4349397	1100	1100	100	3500	100	4350994	N/A
Total Selenium (Se)	ug/L	<1.0	4349397	<1.0	<1.0	1.0	<1.0	1.0	4350994	N/A
Total Silver (Ag)	ug/L	<0.10	4349397	<0.10	<0.10	0.10	<0.10	0.10	4350994	N/A
Total Sodium (Na)	ug/L	7100	4349397	8400	8400	100	87000	100	4350994	N/A
Total Strontium (Sr)	ug/L	17	4349397	76	75	2.0	540	2.0	4350994	N/A
Total Thallium (TI)	ug/L	<0.10	4349397	<0.10	<0.10	0.10	<0.10	0.10	4350994	N/A
Total Tin (Sn)	ug/L	<2.0	4349397	<2.0	<2.0	2.0	<2.0	2.0	4350994	N/A
Total Titanium (Ti)	ug/L	<2.0	4349397	<2.0	<2.0	2.0	5.7	2.0	4350994	N/A
Total Uranium (U)	ug/L	0.14	4349397	3.9	3.8	0.10	14	0.10	4350994	N/A
Total Vanadium (V)	ug/L	<2.0	4349397	<2.0	<2.0	2.0	<2.0	2.0	4350994	N/A
Total Zinc (Zn)	ug/L	<5.0	4349397	21	20	5.0	17	5.0	4350994	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (DRINKING WATER)

Maxxam ID		BRF061	BRF061			
Sampling Date		2016/01/18	2016/01/18			
COC Number		B 159535	B 159535			
	UNITS	PW3	PW3 Lab-Dup	RDL	QC Batch	MDL
Calculated Parameters						
Anion Sum	me/L	1.00		N/A	4348166	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	32		1.0	4348162	0.20
Calculated TDS	mg/L	74		1.0	4348171	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	4348162	0.20
Cation Sum	me/L	0.990		N/A	4348166	N/A
Hardness (CaCO3)	mg/L	29		1.0	4348164	1.0
Ion Balance (% Difference)	%	0.500		N/A	4348165	N/A
Langelier Index (@ 20C)	N/A	-1.74			4348169	N/A
Langelier Index (@ 4C)	N/A	-1.99			4348170	N/A
Nitrate (N)	mg/L	0.47		0.050	4348167	N/A
Saturation pH (@ 20C)	N/A	8.89			4348169	N/A
Saturation pH (@ 4C)	N/A	9.14			4348170	N/A
Inorganics	•					
Total Alkalinity (Total as CaCO3)	mg/L	32	33	5.0	4351041	N/A
Dissolved Chloride (CI)	mg/L	7.5	7.2	1.0	4351046	N/A
Colour	TCU	<5.0	<5.0	5.0	4351052	N/A
Nitrate + Nitrite (N)	mg/L	0.47	0.48	0.050	4351056	N/A
Nitrite (N)	mg/L	<0.010	<0.010	0.010	4351057	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.10	0.090	0.050	4352974	N/A
Total Organic Carbon (C)	mg/L	0.88	0.84	0.50	4352827	N/A
Orthophosphate (P)	mg/L	0.28	0.28	0.010	4351053	N/A
рН	рН	7.15		N/A	4350987	N/A
Reactive Silica (SiO2)	mg/L	20	19	0.50	4351050	N/A
Dissolved Sulphate (SO4)	mg/L	4.5	4.6	2.0	4351048	N/A
Turbidity	NTU	2.9	2.6	0.10	4351045	0.10
Conductivity	uS/cm	91		1.0	4350989	N/A
Metals						
Total Aluminum (Al)	ug/L	27		5.0	4350994	N/A
Total Antimony (Sb)	ug/L	<1.0		1.0	4350994	N/A
Total Arsenic (As)	ug/L	18		1.0	4350994	N/A
Total Barium (Ba)	ug/L	10		1.0	4350994	N/A
Total Beryllium (Be)	ug/L	<1.0		1.0	4350994	N/A
Total Bismuth (Bi)	ug/L	<2.0		2.0	4350994	N/A
RDI - Reportable Detection Limit						

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (DRINKING WATER)

Maxxam ID		BRF061	BRF061			
Sampling Date		2016/01/18	2016/01/18			
COC Number		B 159535	B 159535			
	UNITS	PW3	PW3 Lab-Dup	RDL	QC Batch	MDL
Total Boron (B)	ug/L	<50		50	4350994	N/A
Total Cadmium (Cd)	ug/L	0.043		0.010	4350994	N/A
Total Calcium (Ca)	ug/L	8500		100	4350994	N/A
Total Chromium (Cr)	ug/L	<1.0		1.0	4350994	N/A
Total Cobalt (Co)	ug/L	<0.40		0.40	4350994	N/A
Total Copper (Cu)	ug/L	<2.0		2.0	4350994	N/A
Total Iron (Fe)	ug/L	1000		50	4350994	N/A
Total Lead (Pb)	ug/L	3.0		0.50	4350994	N/A
Total Magnesium (Mg)	ug/L	1900		100	4350994	N/A
Total Manganese (Mn)	ug/L	120		2.0	4350994	N/A
Total Molybdenum (Mo)	ug/L	<2.0		2.0	4350994	N/A
Total Nickel (Ni)	ug/L	<2.0		2.0	4350994	N/A
Total Phosphorus (P)	ug/L	390		100	4350994	N/A
Total Potassium (K)	ug/L	900		100	4350994	N/A
Total Selenium (Se)	ug/L	<1.0		1.0	4350994	N/A
Total Silver (Ag)	ug/L	<0.10		0.10	4350994	N/A
Total Sodium (Na)	ug/L	7900		100	4350994	N/A
Total Strontium (Sr)	ug/L	32		2.0	4350994	N/A
Total Thallium (TI)	ug/L	<0.10		0.10	4350994	N/A
Total Tin (Sn)	ug/L	<2.0		2.0	4350994	N/A
Total Titanium (Ti)	ug/L	2.2		2.0	4350994	N/A
Total Uranium (U)	ug/L	4.4		0.10	4350994	N/A
Total Vanadium (V)	ug/L	<2.0		2.0	4350994	N/A
Total Zinc (Zn)	ug/L	8.7		5.0	4350994	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		BRF058			
Sampling Date		2016/01/18			
COC Number		B 159535			
	UNITS	P1	RDL	QC Batch	MDL
Calculated Parameters					
Anion Sum	me/L	0.200	N/A	4348166	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4348162	0.20
Calculated TDS	mg/L	20	1.0	4348171	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4348162	0.20
Cation Sum	me/L	0.650	N/A	4348166	N/A
Hardness (CaCO3)	mg/L	15	1.0	4348164	1.0
Ion Balance (% Difference)	%	52.9	N/A	4348165	N/A
Langelier Index (@ 20C)	N/A	NC		4348169	N/A
Langelier Index (@ 4C)	N/A	NC		4348170	N/A
Nitrate (N)	mg/L	0.10	0.050	4348167	N/A
Saturation pH (@ 20C)	N/A	NC		4348169	N/A
Saturation pH (@ 4C)	N/A	NC		4348170	N/A
Inorganics					
Total Alkalinity (Total as CaCO3)	mg/L	<5.0	5.0	4351041	N/A
Dissolved Chloride (CI)	mg/L	6.9	1.0	4351046	N/A
Colour	TCU	200	25	4351052	N/A
Nitrate + Nitrite (N)	mg/L	0.10	0.050	4351056	N/A
Nitrite (N)	mg/L	<0.010	0.010	4351057	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.99	0.050	4352974	N/A
Total Organic Carbon (C)	mg/L	22 (1)	2.5	4352827	N/A
Orthophosphate (P)	mg/L	0.031	0.010	4351053	N/A
рН	рН	4.06	N/A	4354666	N/A
Reactive Silica (SiO2)	mg/L	1.5	0.50	4351050	N/A
Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	4351048	N/A
Turbidity	NTU	>1000	1.0	4351045	0.10
Conductivity	uS/cm	63	1.0	4351248	N/A
Metals					
Total Aluminum (Al)	ug/L	2500	5.0	4350994	N/A
Total Antimony (Sb)	ug/L	1.2	1.0	4350994	N/A
Total Arsenic (As)	ug/L	2.5	1.0	4350994	N/A
Total Barium (Ba)	ug/L	43	1.0	4350994	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4350994	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4350994	N/A
Total Boron (B)	ug/L	<50	50	4350994	N/A
RDL = Reportable Detection Limit					

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Analysis performed on decanted sample due to sediment content.

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		BRF058			
Sampling Date		2016/01/18			
COC Number		B 159535			
	UNITS	P1	RDL	QC Batch	MDL
Total Cadmium (Cd)	ug/L	0.35	0.010	4350994	N/A
Total Calcium (Ca)	ug/L	3600	100	4350994	N/A
Total Chromium (Cr)	ug/L	15	1.0	4350994	N/A
Total Cobalt (Co)	ug/L	0.63	0.40	4350994	N/A
Total Copper (Cu)	ug/L	52	2.0	4350994	N/A
Total Iron (Fe)	ug/L	2200	50	4350994	N/A
Total Lead (Pb)	ug/L	14	0.50	4350994	N/A
Total Magnesium (Mg)	ug/L	1400	100	4350994	N/A
Total Manganese (Mn)	ug/L	39	2.0	4350994	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4350994	N/A
Total Nickel (Ni)	ug/L	11	2.0	4350994	N/A
Total Phosphorus (P)	ug/L	490	100	4350994	N/A
Total Potassium (K)	ug/L	360	100	4350994	N/A
Total Selenium (Se)	ug/L	1.7	1.0	4350994	N/A
Total Silver (Ag)	ug/L	0.24	0.10	4350994	N/A
Total Sodium (Na)	ug/L	2500	100	4350994	N/A
Total Strontium (Sr)	ug/L	29	2.0	4350994	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4350994	N/A
Total Tin (Sn)	ug/L	12	2.0	4350994	N/A
Total Titanium (Ti)	ug/L	53	2.0	4350994	N/A
Total Uranium (U)	ug/L	3.9	0.10	4350994	N/A
Total Vanadium (V)	ug/L	4.2	2.0	4350994	N/A
Total Zinc (Zn)	ug/L	110	5.0	4350994	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

MICROBIOLOGY COLILERT (DRINKING WATER)

Maxxam ID		BRF057						
Sampling Date		2016/01/18						
Sumpling Dute		13:00						
COC Number		B 159535						
	UNITS	DW1	RDL	QC Batch	MDL			
Microbiological								
Escherichia coli	CFU/100mL	<1.0	1.0	4348900	N/A			
Total Coliforms	CFU/100mL	240	1.0	4348900	N/A			
RDL = Reportable Detection Limit								
QC Batch = Quality Control I	Batch							
N/A = Not Applicable								

Englobe Corp.

Client Project #: 20814 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: BRF057 Sample ID: DW1

Matrix: Drinking Water

Collected:

2016/01/18

Shipped:

Received: 2016/01/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4348162	N/A	2016/01/20	Automated Statchk
Alkalinity	KONE	4351041	N/A	2016/01/21	Mary Clancey
Chloride	KONE	4351046	N/A	2016/01/21	Arlene Rossiter
TC/EC Drinking Water CFU/100mL		4348900	N/A	2016/01/18	Jessica Romo
Colour	KONE	4351052	N/A	2016/01/22	Arlene Rossiter
Conductance - water	AT	4350989	N/A	2016/01/20	Tiffany Morash
Hardness (calculated as CaCO3)		4348164	N/A	2016/01/20	Automated Statchk
Metals Water Total MS	CICP/MS	4349397	2016/01/19	2016/01/19	Bryon Angevine
Ion Balance (% Difference)	CALC	4348165	N/A	2016/01/22	Automated Statchk
Anion and Cation Sum	CALC	4348166	N/A	2016/01/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4352974	N/A	2016/01/21	Arlene Rossiter
Nitrogen - Nitrate + Nitrite	KONE	4351056	N/A	2016/01/22	Arlene Rossiter
Nitrogen - Nitrite	KONE	4351057	N/A	2016/01/21	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4348167	N/A	2016/01/22	Automated Statchk
pH	AT	4350987	N/A	2016/01/20	Tiffany Morash
Phosphorus - ortho	KONE	4351053	N/A	2016/01/21	Arlene Rossiter
Sat. pH and Langelier Index (@ 20C)	CALC	4348169	N/A	2016/01/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4348170	N/A	2016/01/22	Automated Statchk
Reactive Silica	KONE	4351050	N/A	2016/01/21	Arlene Rossiter
Sulphate	KONE	4351048	N/A	2016/01/21	Arlene Rossiter
Total Dissolved Solids (TDS calc)	CALC	4348171	N/A	2016/01/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4352827	N/A	2016/01/21	Soraya Merchant
Turbidity	TURB	4351045	N/A	2016/01/20	Tiffany Morash

Maxxam ID: BRF058 Sample ID: P1 Matrix: Water

Collected: 2016/01/18

Shipped: Received:

ceived: 2016/01/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4348162	N/A	2016/01/22	Automated Statchk
Alkalinity	KONE	4351041	N/A	2016/01/21	Mary Clancey
Chloride	KONE	4351046	N/A	2016/01/21	Arlene Rossiter
Colour	KONE	4351052	N/A	2016/01/22	Arlene Rossiter
Conductance - water	AT	4351248	N/A	2016/01/20	Tammy Peters
Hardness (calculated as CaCO3)		4348164	N/A	2016/01/21	Automated Statchk
Metals Water Total MS	CICP/MS	4350994	2016/01/20	2016/01/21	Bryon Angevine
Ion Balance (% Difference)	CALC	4348165	N/A	2016/01/22	Automated Statchk
Anion and Cation Sum	CALC	4348166	N/A	2016/01/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4352974	N/A	2016/01/21	Arlene Rossiter
Nitrogen - Nitrate + Nitrite	KONE	4351056	N/A	2016/01/22	Arlene Rossiter
Nitrogen - Nitrite	KONE	4351057	N/A	2016/01/21	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4348167	N/A	2016/01/22	Automated Statchk
pH	AT	4354666	N/A	2016/01/22	Tammy Peters
Phosphorus - ortho	KONE	4351053	N/A	2016/01/21	Arlene Rossiter
Sat. pH and Langelier Index (@ 20C)	CALC	4348169	N/A	2016/01/22	Automated Statchk

Englobe Corp. Client Project #: 20814

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: BRF058 Sample ID: P1

Collected: 2016/01/18

Matrix: Water

Shipped:

Received: 2016/01/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sat. pH and Langelier Index (@ 4C)	CALC	4348170	N/A	2016/01/22	Automated Statchk
Reactive Silica	KONE	4351050	N/A	2016/01/21	Arlene Rossiter
Sulphate	KONE	4351048	N/A	2016/01/21	Arlene Rossiter
Total Dissolved Solids (TDS calc)	CALC	4348171	N/A	2016/01/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4352827	N/A	2016/01/21	Soraya Merchant
Turbidity	TURB	4351045	N/A	2016/01/20	Tiffany Morash

Maxxam ID: BRF059 Sample ID: PW1

Collected: Shipped:

2016/01/18

. Matrix: **Drinking Water**

Received:

2016/01/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4348162	N/A	2016/01/20	Automated Statchk
Alkalinity	KONE	4351041	N/A	2016/01/21	Mary Clancey
Chloride	KONE	4351046	N/A	2016/01/21	Arlene Rossiter
Colour	KONE	4351052	N/A	2016/01/22	Arlene Rossiter
Conductance - water	AT	4350989	N/A	2016/01/20	Tiffany Morash
Hardness (calculated as CaCO3)		4348164	N/A	2016/01/21	Automated Statchk
Metals Water Total MS	CICP/MS	4350994	2016/01/20	2016/01/20	Bryon Angevine
Ion Balance (% Difference)	CALC	4348165	N/A	2016/01/22	Automated Statchk
Anion and Cation Sum	CALC	4348166	N/A	2016/01/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4352974	N/A	2016/01/21	Arlene Rossiter
Nitrogen - Nitrate + Nitrite	KONE	4351056	N/A	2016/01/22	Arlene Rossiter
Nitrogen - Nitrite	KONE	4351057	N/A	2016/01/21	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4348167	N/A	2016/01/22	Automated Statchk
pH	AT	4350987	N/A	2016/01/20	Tiffany Morash
Phosphorus - ortho	KONE	4351053	N/A	2016/01/21	Arlene Rossiter
Sat. pH and Langelier Index (@ 20C)	CALC	4348169	N/A	2016/01/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4348170	N/A	2016/01/22	Automated Statchk
Reactive Silica	KONE	4351050	N/A	2016/01/21	Arlene Rossiter
Sulphate	KONE	4351048	N/A	2016/01/21	Arlene Rossiter
Total Dissolved Solids (TDS calc)	CALC	4348171	N/A	2016/01/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4352827	N/A	2016/01/21	Soraya Merchant
Turbidity	TURB	4351045	N/A	2016/01/20	Tiffany Morash

BRF059 Dup Maxxam ID: Sample ID:

Collected: Shipped:

2016/01/18

PW1 . Matrix: **Drinking Water**

Received: 2016/01/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Water Total MS	CICP/MS	4350994	2016/01/20	2016/01/20	Bryon Angevine

Englobe Corp. Client Project #: 20814

Sampler Initials: LL

TEST SUMMARY

Maxxam ID: BRF060 Sample ID: PW2

Matrix: Drinking Water

Collected:

2016/01/18

Shipped:

Received: 2016/01/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4348162	N/A	2016/01/20	Automated Statchk
Alkalinity	KONE	4351041	N/A	2016/01/21	Mary Clancey
Chloride	KONE	4351046	N/A	2016/01/21	Arlene Rossiter
Colour	KONE	4351052	N/A	2016/01/22	Arlene Rossiter
Conductance - water	AT	4350989	N/A	2016/01/20	Tiffany Morash
Hardness (calculated as CaCO3)		4348164	N/A	2016/01/21	Automated Statchk
Metals Water Total MS	CICP/MS	4350994	2016/01/20	2016/01/20	Bryon Angevine
Ion Balance (% Difference)	CALC	4348165	N/A	2016/01/22	Automated Statchk
Anion and Cation Sum	CALC	4348166	N/A	2016/01/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4352974	N/A	2016/01/21	Arlene Rossiter
Nitrogen - Nitrate + Nitrite	KONE	4351056	N/A	2016/01/22	Arlene Rossiter
Nitrogen - Nitrite	KONE	4351057	N/A	2016/01/21	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4348167	N/A	2016/01/22	Automated Statchk
рН	AT	4350987	N/A	2016/01/20	Tiffany Morash
Phosphorus - ortho	KONE	4351053	N/A	2016/01/21	Arlene Rossiter
Sat. pH and Langelier Index (@ 20C)	CALC	4348169	N/A	2016/01/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4348170	N/A	2016/01/22	Automated Statchk
Reactive Silica	KONE	4351050	N/A	2016/01/21	Arlene Rossiter
Sulphate	KONE	4351048	N/A	2016/01/21	Arlene Rossiter
Total Dissolved Solids (TDS calc)	CALC	4348171	N/A	2016/01/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4352827	N/A	2016/01/21	Soraya Merchant
Turbidity	TURB	4351045	N/A	2016/01/20	Tiffany Morash

Maxxam ID: BRF061 Sample ID: PW3

Matrix: Drinking Water

Collected: 2016/01/18

Shipped:

Received: 2016/01/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4348162	N/A	2016/01/20	Automated Statchk
Alkalinity	KONE	4351041	N/A	2016/01/21	Mary Clancey
Chloride	KONE	4351046	N/A	2016/01/21	Arlene Rossiter
Colour	KONE	4351052	N/A	2016/01/22	Arlene Rossiter
Conductance - water	AT	4350989	N/A	2016/01/20	Tiffany Morash
Hardness (calculated as CaCO3)		4348164	N/A	2016/01/21	Automated Statchk
Metals Water Total MS	CICP/MS	4350994	2016/01/20	2016/01/20	Bryon Angevine
Ion Balance (% Difference)	CALC	4348165	N/A	2016/01/22	Automated Statchk
Anion and Cation Sum	CALC	4348166	N/A	2016/01/22	Automated Statchk
Nitrogen Ammonia - water	KONE	4352974	N/A	2016/01/21	Arlene Rossiter
Nitrogen - Nitrate + Nitrite	KONE	4351056	N/A	2016/01/22	Arlene Rossiter
Nitrogen - Nitrite	KONE	4351057	N/A	2016/01/21	Mary Clancey
Nitrogen - Nitrate (as N)	CALC	4348167	N/A	2016/01/22	Automated Statchk
pH	AT	4350987	N/A	2016/01/20	Tiffany Morash
Phosphorus - ortho	KONE	4351053	N/A	2016/01/21	Arlene Rossiter
Sat. pH and Langelier Index (@ 20C)	CALC	4348169	N/A	2016/01/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4348170	N/A	2016/01/22	Automated Statchk

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

TEST SUMMARY

Maxxam ID: BRF061 Sample ID: PW3

Matrix: Drinking Water

Collected: 2016/01/18 Shipped:

Received: 2016/01/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Reactive Silica	KONE	4351050	N/A	2016/01/21	Arlene Rossiter
Sulphate	KONE	4351048	N/A	2016/01/21	Arlene Rossiter
Total Dissolved Solids (TDS calc)	CALC	4348171	N/A	2016/01/22	Automated Statchk
Organic carbon - Total (TOC)	TECH	4352827	N/A	2016/01/21	Soraya Merchant
Turbidity	TURB	4351045	N/A	2016/01/20	Tiffany Morash

Maxxam ID: BRF061 Dup **Collected:** 2016/01/18 Sample ID: PW3

Shipped:

Matrix: Drinking Water Received: 2016/01/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4351041	N/A	2016/01/21	Mary Clancey
Chloride	KONE	4351046	N/A	2016/01/21	Arlene Rossiter
Colour	KONE	4351052	N/A	2016/01/22	Arlene Rossiter
Nitrogen Ammonia - water	KONE	4352974	N/A	2016/01/21	Arlene Rossiter
Nitrogen - Nitrate + Nitrite	KONE	4351056	N/A	2016/01/22	Arlene Rossiter
Nitrogen - Nitrite	KONE	4351057	N/A	2016/01/21	Mary Clancey
Phosphorus - ortho	KONE	4351053	N/A	2016/01/21	Arlene Rossiter
Reactive Silica	KONE	4351050	N/A	2016/01/21	Arlene Rossiter
Sulphate	KONE	4351048	N/A	2016/01/21	Arlene Rossiter
Organic carbon - Total (TOC)	TECH	4352827	N/A	2016/01/21	Soraya Merchant
Turbidity	TURB	4351045	N/A	2016/01/20	Tiffany Morash

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	7.0°C

Sample BRF058-01: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample BRF060-01: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Results relate only to the items tested.

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4348900	JRM	Method Blank	Escherichia coli	2016/01/18	<1.0	-	CFU/10	0
			Total Coliforms	2016/01/18	<1.0		CFU/10	0
4349397	BAN	Matrix Spike	Total Aluminum (Al)	2016/01/19		100	%	80 - 120
		·	Total Antimony (Sb)	2016/01/19		102	%	80 - 120
			Total Arsenic (As)	2016/01/19		94	%	80 - 120
			Total Barium (Ba)	2016/01/19		NC	%	80 - 120
			Total Beryllium (Be)	2016/01/19		99	%	80 - 120
			Total Bismuth (Bi)	2016/01/19		101	%	80 - 120
			Total Boron (B)	2016/01/19		102	%	80 - 120
			Total Cadmium (Cd)	2016/01/19		99	%	80 - 120
			Total Calcium (Ca)	2016/01/19		NC	%	80 - 120
			Total Chromium (Cr)	2016/01/19		97	%	80 - 120
			Total Cobalt (Co)	2016/01/19		95	%	80 - 120
			Total Copper (Cu)	2016/01/19		94	%	80 - 120
			Total Iron (Fe)	2016/01/19		101	%	80 - 120
			Total Lead (Pb)	2016/01/19		101	%	80 - 120
			Total Magnesium (Mg)	2016/01/19		100	%	80 - 120
			Total Manganese (Mn)	2016/01/19		97	%	80 - 120
			Total Molybdenum (Mo)	2016/01/19		106	%	80 - 120
			Total Nickel (Ni)	2016/01/19		99	%	80 - 120
			Total Phosphorus (P)	2016/01/19		104	%	80 - 120
			Total Potassium (K)	2016/01/19		101	%	80 - 120
			Total Selenium (Se)	2016/01/19		98	%	80 - 120
			Total Silver (Ag)	2016/01/19		99	%	80 - 120
			Total Sodium (Na)	2016/01/19		NC	%	80 - 120
			Total Strontium (Sr)	2016/01/19		NC	%	80 - 120
			Total Thallium (Tl)	2016/01/19		103	%	80 - 120
			Total Tin (Sn)	2016/01/19		103	%	80 - 120
			Total Titanium (Ti)	2016/01/19		99	%	80 - 120
			Total Uranium (U)	2016/01/19		106	%	80 - 120
			Total Vanadium (V)	2016/01/19		96	%	80 - 120
			Total Zinc (Zn)	2016/01/19		97	%	80 - 120
4349397	BAN	Spiked Blank	Total Aluminum (Al)	2016/01/19		99	%	80 - 120
			Total Antimony (Sb)	2016/01/19		100	%	80 - 120
			Total Arsenic (As)	2016/01/19		93	%	80 - 120
			Total Barium (Ba)	2016/01/19		97	%	80 - 120
			Total Beryllium (Be)	2016/01/19		96	%	80 - 120
			Total Bismuth (Bi)	2016/01/19		103	%	80 - 120
			Total Boron (B)	2016/01/19		98	%	80 - 120
			Total Cadmium (Cd)	2016/01/19		98	%	80 - 120
			Total Calcium (Ca)	2016/01/19		100	%	80 - 120
			Total Chromium (Cr)	2016/01/19		96	%	80 - 120
			Total Cobalt (Co)	2016/01/19		97	%	80 - 120
			Total Copper (Cu)	2016/01/19		96	%	80 - 120
			Total Iron (Fe)	2016/01/19		102	%	80 - 120
			Total Lead (Pb)	2016/01/19		101	%	80 - 120
			Total Magnesium (Mg)	2016/01/19		102	%	80 - 120
			Total Manganese (Mn)	2016/01/19		98	%	80 - 120
			Total Molybdenum (Mo)	2016/01/19		99	%	80 - 120
			Total Nickel (Ni)	2016/01/19		99	%	80 - 120
			Total Phosphorus (P)	2016/01/19		102	%	80 - 120
			Total Potassium (K)	2016/01/19		99	%	80 - 120
			Total Selenium (Se)	2016/01/19		96	%	80 - 120

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
		<u> </u>	Total Silver (Ag)	2016/01/19		97	%	80 - 120
			Total Sodium (Na)	2016/01/19		101	%	80 - 120
			Total Strontium (Sr)	2016/01/19		99	%	80 - 120
			Total Thallium (Tl)	2016/01/19		102	%	80 - 120
			Total Tin (Sn)	2016/01/19		100	%	80 - 120
			Total Titanium (Ti)	2016/01/19		101	%	80 - 120
			Total Uranium (U)	2016/01/19		103	%	80 - 120
			Total Vanadium (V)	2016/01/19		96	%	80 - 120
			Total Zinc (Zn)	2016/01/19		95	%	80 - 120
349397	BAN	Method Blank	Total Aluminum (Al)	2016/01/19	<5.0		ug/L	
			Total Antimony (Sb)	2016/01/19	<1.0		ug/L	
			Total Arsenic (As)	2016/01/19	<1.0		ug/L	
			Total Barium (Ba)	2016/01/19	<1.0		ug/L	
			Total Beryllium (Be)	2016/01/19	<1.0		ug/L	
			Total Bismuth (Bi)	2016/01/19	<2.0		ug/L	
			Total Boron (B)	2016/01/19	<50		ug/L	
			Total Cadmium (Cd)	2016/01/19	< 0.010		ug/L	
			Total Calcium (Ca)	2016/01/19	<100		ug/L	
			Total Chromium (Cr)	2016/01/19	<1.0		ug/L	
			Total Cobalt (Co)	2016/01/19	< 0.40		ug/L	
			Total Copper (Cu)	2016/01/19	<2.0		ug/L	
			Total Iron (Fe)	2016/01/19	<50		ug/L	
			Total Lead (Pb)	2016/01/19	< 0.50		ug/L	
			Total Magnesium (Mg)	2016/01/19	<100		ug/L	
			Total Manganese (Mn)	2016/01/19	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/01/19	<2.0		ug/L	
			Total Nickel (Ni)	2016/01/19	<2.0		ug/L	
			Total Phosphorus (P)	2016/01/19	<100		ug/L	
			Total Potassium (K)	2016/01/19	<100		ug/L	
			Total Selenium (Se)	2016/01/19	<1.0		ug/L	
			Total Silver (Ag)	2016/01/19	< 0.10		ug/L	
			Total Sodium (Na)	2016/01/19	<100		ug/L	
			Total Strontium (Sr)	2016/01/19	<2.0		ug/L	
			Total Thallium (TI)	2016/01/19	< 0.10		ug/L	
			Total Tin (Sn)	2016/01/19	<2.0		ug/L	
			Total Titanium (Ti)	2016/01/19	<2.0		ug/L	
			Total Uranium (U)	2016/01/19	<0.10		ug/L	
			Total Vanadium (V)	2016/01/19	<2.0		ug/L	
			Total Zinc (Zn)	2016/01/19	<5.0		ug/L	
349397	BAN	RPD - Sample/Sample Dup		2016/01/19	NC		%	20
350987	TMO		pH	2016/01/20		100	%	97 - 103
350987		RPD - Sample/Sample Dup	•	2016/01/20	7.7 (1)	200	%	N/A
350989		Spiked Blank	Conductivity	2016/01/20	,., (±)	100	%	80 - 120
350989		Method Blank	Conductivity	2016/01/20	1.5,	100	uS/cm	
330303	11110	Wiethou Blank	Conductivity	2010/01/20	RDL=1.0		u3, cm	
350989	TNAO	RPD - Sample/Sample Dup	Conductivity	2016/01/20	NC NC		%	25
350989	BAN		Total Aluminum (Al)	2016/01/20	INC	96	% %	
JJUJJ4	DAIN	Matrix Spike(BRF059)	` ,	2016/01/20				80 - 120
			Total Artimony (Sb)	2016/01/20 2016/01/20		100	% %	80 - 120
			Total Parium (Pa)	• •		95 06	%	80 - 120
			Total Barium (Ba)	2016/01/20		96	%	80 - 120
			Total Beryllium (Be)	2016/01/20		98	%	80 - 120
			Total Bismuth (Bi)	2016/01/20		100	%	80 - 120
			Total Boron (B)	2016/01/20		102	%	80 - 120

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Cadmium (Cd)	2016/01/20		101	%	80 - 120
			Total Calcium (Ca)	2016/01/20		NC	%	80 - 120
			Total Chromium (Cr)	2016/01/20		96	%	80 - 120
			Total Cobalt (Co)	2016/01/20		99	%	80 - 120
			Total Copper (Cu)	2016/01/20		NC	%	80 - 120
			Total Iron (Fe)	2016/01/20		98	%	80 - 120
			Total Lead (Pb)	2016/01/20		97	%	80 - 120
			Total Magnesium (Mg)	2016/01/20		99	%	80 - 120
			Total Manganese (Mn)	2016/01/20		98	%	80 - 120
			Total Molybdenum (Mo)	2016/01/20		103	%	80 - 120
			Total Nickel (Ni)	2016/01/20		98	%	80 - 120
			Total Phosphorus (P)	2016/01/20		102	%	80 - 120
			Total Potassium (K)	2016/01/20		100	%	80 - 120
			Total Selenium (Se)	2016/01/20		96	%	80 - 120
			Total Silver (Ag)	2016/01/20		97	%	80 - 120
			Total Sodium (Na)	2016/01/20		98	%	80 - 120
			Total Strontium (Sr)	2016/01/20		NC	%	80 - 120
			Total Thallium (TI)	2016/01/20		99	%	80 - 120
			Total Tin (Sn)	2016/01/20		102	%	80 - 120
			Total Titanium (Ti)	2016/01/20		98	%	80 - 120
			Total Uranium (U)	2016/01/20		103	%	80 - 120
			Total Vanadium (V)	2016/01/20		96	%	80 - 120
			Total Zinc (Zn)	2016/01/20		97	%	80 - 120
4350994	BAN	Spiked Blank	Total Aluminum (AI)	2016/01/20		100	%	80 - 120
			Total Antimony (Sb)	2016/01/20		101	%	80 - 120
			Total Arsenic (As)	2016/01/20		95	%	80 - 120
			Total Barium (Ba)	2016/01/20		97	%	80 - 120
			Total Beryllium (Be)	2016/01/20		99	%	80 - 120
			Total Bismuth (Bi)	2016/01/20		102	%	80 - 120
			Total Boron (B)	2016/01/20		102	%	80 - 120
			Total Cadmium (Cd)	2016/01/20		101	%	80 - 120
			Total Calcium (Ca)	2016/01/20		102	%	80 - 120
			Total Chromium (Cr)	2016/01/20		97	%	80 - 120
			Total Cobalt (Co)	2016/01/20		99	%	80 - 120
			Total Copper (Cu)	2016/01/20		100	%	80 - 120
			Total Iron (Fe)	2016/01/20		100	%	80 - 120
			Total Lead (Pb)	2016/01/20		99	%	80 - 120
			Total Magnesium (Mg)	2016/01/20		101	%	80 - 120
			Total Manganese (Mn)	2016/01/20		99	%	80 - 120
			Total Molybdenum (Mo)	2016/01/20		102	%	80 - 120
			Total Nickel (Ni)	2016/01/20		100	%	80 - 120
			Total Phosphorus (P)	2016/01/20		104	%	80 - 120
			Total Potassium (K)	2016/01/20		103	%	80 - 120
			Total Selenium (Se)	2016/01/20		97	%	80 - 120
			Total Silver (Ag)	2016/01/20		98	%	80 - 120
			Total Sodium (Na)	2016/01/20		100	%	80 - 120
			Total Strontium (Sr)	2016/01/20		100	%	80 - 120
			Total Thallium (Tl)	2016/01/20		101	%	80 - 120
			Total Tin (Sn)	2016/01/20		102	%	80 - 120
			Total Titanium (Ti)	2016/01/20		103	%	80 - 120
			Total Uranium (U)	2016/01/20		105	%	80 - 120
			Total Vanadium (V)	2016/01/20		98	%	80 - 120
			Total Zinc (Zn)	2016/01/20		97	%	80 - 120

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

QA/QC				Date		%	
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery UNITS	QC Limits
4350994	BAN	Method Blank	Total Aluminum (AI)	2016/01/20	<5.0	ug/L	
			Total Antimony (Sb)	2016/01/20	<1.0	ug/L	
			Total Arsenic (As)	2016/01/20	<1.0	ug/L	
			Total Barium (Ba)	2016/01/20	<1.0	ug/L	
			Total Beryllium (Be)	2016/01/20	<1.0	ug/L	
			Total Bismuth (Bi)	2016/01/20	<2.0	ug/L	
			Total Boron (B)	2016/01/20	<50	ug/L	
			Total Cadmium (Cd)	2016/01/20	< 0.010	ug/L	
			Total Calcium (Ca)	2016/01/20	<100	ug/L	
			Total Chromium (Cr)	2016/01/20	<1.0	ug/L	
			Total Cobalt (Co)	2016/01/20	< 0.40	ug/L	
			Total Copper (Cu)	2016/01/20	<2.0	ug/L	
			Total Iron (Fe)	2016/01/20	<50	ug/L	
			Total Lead (Pb)	2016/01/20	<0.50	ug/L	
			Total Magnesium (Mg)	2016/01/20	<100	ug/L	
			Total Manganese (Mn)	2016/01/20	<2.0	ug/L	
			Total Molybdenum (Mo)	2016/01/20	<2.0	ug/L	
			Total Nickel (Ni)	2016/01/20	<2.0	ug/L	
			Total Phosphorus (P)	2016/01/20	<100	ug/L	
			Total Potassium (K)	2016/01/20	<100	ug/L	
			Total Selenium (Se)	2016/01/20	<1.0	ug/L	
			Total Silver (Ag)	2016/01/20	<0.10	ug/L	
			Total Sodium (Na)	2016/01/20	<100	ug/L	
			Total Strontium (Sr)	2016/01/20	<2.0	ug/L	
			Total Thallium (TI)	2016/01/20	<0.10	ug/L	
			Total Tin (Sn)	2016/01/20	<2.0	ug/L	
			Total Titanium (Ti)	2016/01/20	<2.0	ug/L	
			Total Uranium (U)	2016/01/20	<0.10	ug/L	
			Total Vanadium (V)	2016/01/20	<2.0	ug/L	
			Total Zinc (Zn)	2016/01/20	<5.0	ug/L	
4350994	BAN	RPD - Sample/Sample Dup		2016/01/20	NC	ug/L %	20
4330334	DAIN	in b Sample/Sample Bup	Total Antimony (Sb)	2016/01/20	NC	%	20
			Total Arsenic (As)	2016/01/20	1.8	% %	20
			Total Barium (Ba)	2016/01/20	0.80	%	20
			Total Beryllium (Be)	2016/01/20	NC	% %	20
			Total Bismuth (Bi)	2016/01/20	NC	% %	20
			Total Boron (B)	2016/01/20	NC	% %	20
			Total Cadmium (Cd)	2016/01/20	NC	% %	20
			Total Calcium (Ca)	2016/01/20			20
			Total Chromium (Cr)		0.14	%	
			` <i>'</i>	2016/01/20	NC	%	20
			Total Copper (Cv)	2016/01/20	NC 0.11	%	20
			Total Copper (Cu)	2016/01/20	0.11	%	20
			Total Iron (Fe)	2016/01/20	NC	%	20
			Total Lead (Pb)	2016/01/20	NC 0.75	%	20
			Total Magnesium (Mg)	2016/01/20	0.75	%	20
			Total Manganese (Mn)	2016/01/20	NC	%	20
			Total Molybdenum (Mo)	2016/01/20	NC	%	20
			Total Nickel (Ni)	2016/01/20	NC	%	20
			Total Phosphorus (P)	2016/01/20	NC 0.53	%	20
			Total Potassium (K)	2016/01/20	0.53	%	20
			Total Selenium (Se)	2016/01/20	NC	%	20
			Total Silver (Ag)	2016/01/20	NC	%	20
			Total Sodium (Na)	2016/01/20	0.067	%	20

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
Dateii		<u> СС туре</u>	Total Strontium (Sr)	2016/01/20	0.96	Recovery	%	20
			Total Thallium (TI)	2016/01/20	NC		%	20
			Total Tin (Sn)	2016/01/20	NC		%	20
			Total Titanium (Ti)	2016/01/20	NC		%	20
			Total Uranium (U)	2016/01/20	1.5		%	20
			Total Vanadium (V)	2016/01/20	NC		%	20
			Total Zinc (Zn)	2016/01/20	NC		%	20
4351041	MCN	Matrix Spike(BRF061)	Total Alkalinity (Total as CaCO3)	2016/01/21	IVC	NC	%	80 - 120
4351041		Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/01/21		105	%	80 - 120
4351041		Method Blank	Total Alkalinity (Total as CaCO3)	2016/01/21	<5.0	103	mg/L	00 120
4351041			Total Alkalinity (Total as CaCO3)	2016/01/21	1.9		%	25
4351045	TMO	QC Standard	Turbidity	2016/01/20	1.3	85	%	80 - 120
4351045		Method Blank	Turbidity	2016/01/20	<0.10	00	NTU	00 120
4351045	TMO	RPD - Sample/Sample Dup	Turbidity	2016/01/20	13		%	20
4351046	ARS	Matrix Spike(BRF061)	Dissolved Chloride (CI)	2016/01/21	13	95	%	80 - 120
4351046	ARS	QC Standard	Dissolved Chloride (Cl)	2016/01/21		103	%	80 - 120
4351046	ARS	Spiked Blank	Dissolved Chloride (CI)	2016/01/21		102	%	80 - 120
4351046	ARS	Method Blank	Dissolved Chloride (CI)	2016/01/21	<1.0	102	mg/L	00 120
4351046	ARS	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2016/01/21	3.8		%	25
4351048	ARS	Matrix Spike(BRF061)	Dissolved Sulphate (SO4)	2016/01/21	5.0	111	%	80 - 120
4351048	ARS	Spiked Blank	Dissolved Sulphate (SO4)	2016/01/21		102	%	80 - 120
4351048	ARS	Method Blank	Dissolved Sulphate (SO4)	2016/01/21	<2.0	102	mg/L	00 120
4351048	ARS	RPD - Sample/Sample Dup		2016/01/21	NC		%	25
4351050	ARS	Matrix Spike(BRF061)	Reactive Silica (SiO2)	2016/01/21	IVC	NC	%	80 - 120
4351050	ARS	Spiked Blank	Reactive Silica (SiO2)	2016/01/21		105	%	80 - 120
4351050	ARS	Method Blank	Reactive Silica (SiO2)	2016/01/21	<0.50	103	mg/L	00 120
4351050	ARS	RPD - Sample/Sample Dup		2016/01/21	5.8		/// _%	25
4351050	ARS	Spiked Blank	Colour	2016/01/21	5.0	108	%	80 - 120
4351052	ARS	Method Blank	Colour	2016/01/22	<5.0	100	TCU	00 120
4351052	ARS		Colour	2016/01/22	NC		%	20
4351053	ARS	Matrix Spike(BRF061)	Orthophosphate (P)	2016/01/21	140	NC	%	80 - 120
4351053	ARS	Spiked Blank	Orthophosphate (P)	2016/01/21		102	%	80 - 120
4351053	ARS	Method Blank	Orthophosphate (P)	2016/01/21	< 0.010	102	mg/L	00 120
4351053	ARS		Orthophosphate (P)	2016/01/21	0.64		%	25
4351056	ARS	Matrix Spike(BRF061)	Nitrate + Nitrite (N)	2016/01/22	0.0 1	102	%	80 - 120
4351056	ARS	Spiked Blank	Nitrate + Nitrite (N)	2016/01/22		103	%	80 - 120
4351056	ARS	Method Blank	Nitrate + Nitrite (N)	2016/01/22	< 0.050	103	mg/L	00 120
4351056		RPD - Sample/Sample Dup		2016/01/22	1.8		%	25
4351057		Matrix Spike(BRF061)	Nitrite (N)	2016/01/21	1.0	95	%	80 - 120
4351057	MCN	Spiked Blank	Nitrite (N)	2016/01/21		95	%	80 - 120
4351057	MCN	Method Blank	Nitrite (N)	2016/01/21	<0.010	33	mg/L	00 120
4351057	MCN	RPD - Sample/Sample Dup	Nitrite (N)	2016/01/21	NC		%	25
4351248	TPE	Spiked Blank	Conductivity	2016/01/20	140	100	%	80 - 120
4351248	TPE	Method Blank	Conductivity	2016/01/20	1.2,	100	uS/cm	00 120
4551240		Wiethou Blank	Conductivity	2010/01/20	RDL=1.0		u3/ cm	
1251210	TDE	RDD - Sample /Sample Dun	Conductivity	2016/01/20	0.79		0/	25
4351248 4352827	TPE SMT	RPD - Sample/Sample Dup Matrix Spike(BRF061)	Total Organic Carbon (C)	2016/01/20	0.79	106	% %	80 - 120
4352827	SMT	Spiked Blank	Total Organic Carbon (C)	2016/01/21		106	% %	80 - 120 80 - 120
4352827	SMT	Method Blank			<0 E0	102		00 - 120
4352827	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C) Total Organic Carbon (C)	2016/01/21	<0.50 NC		mg/L %	20
				2016/01/21	INC	102		
4352974	ARS	Matrix Spike(BRF061)	Nitrogen (Ammonia Nitrogen)	2016/01/21		102	% %	80 - 120
4352974	ARS	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/01/21	<0.0E0	103	% ma/l	80 - 120
4352974	ARS	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/01/21	<0.050		mg/L	

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4352974	ARS	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/01/21	NC		%	20
4354666	TPE	QC Standard	рН	2016/01/22		101	%	N/A
4354666	TPE	RPD - Sample/Sample Dup	рН	2016/01/22	0.53		%	N/A

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Duplicate results confirmed by repeat analysis.

Englobe Corp. Client Project #: 20814 Sampler Initials: LL

VALIDATION SIGNATURE PAGE

Original Signed QC contained in t

QC contained in this report were reviewed and validated by the following individual(s).

Original Signed

Andrew VanWychen, Bedford Micro

Original Signed

Mike MacGillivray, Scientific Specialist (Inorganics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

This colu	ımın fo	r lab use only:	INV	OICE INFORMATION:			REPORT INFORMATION (if differs from invoice):						PO #						TURNAROUND TIME						
Client Code	8	41009	Cor	mpany Name: ENGLO	SE		T WITH	npany Na			-	Ar	-46		===*	Projec	t#/Ph	ase #	20	180	1		Stan	dard	
Maxxam Jo		- 2 - 2	Cor	ntact Name: Aven Col	e		Con	tact Nan	ne:							0.1.0.0	t Name	/ Site I	ocatio	n			10 d	17.0	
	156	.09966	Add	Control Contro	Cerr		Add	ress:								Quote							If RUS	H Spec	cify Date:
ant	*	Temp	-	Postal Code			_				_	Post Code	al e			Site #	Order #			_			Pre-s	chedule	rush work
Cooler ID Seal Present	Seal Intact	Car(2)	Em	ail:			Ema	il:	7	-	-					Sampl							Chan	ge for #	
Ses Co	, G		Ph:	Fax: deline Requirements / Detecti	and tooks /	0	Ph:					Fax:	-			L	- 1	-	Fuel C6-C32		_	_		bmitted	
Integri YES Labelled by	(10)	Integrity / Checklist by Ct V Location / Bin #		ecify Matrix: Surface/Salt/Ground/ Potable/NonPotable/ Field Sample Identification		Date/T Samp	ime led //////////////////////////////////	& type of bottles x 300 x 300 x 300 x 300 x 300 x 300	150	Lab Filtration Required	RCAP-30 Choose Total or Diss Metals	(0)	Total Di for well	s for ground water Mercury	1000	Mercury 6 Low level by Cold Vapour	Residential, Parklands, Agricultur Hot Water soluble Boron	RBCA Hydrocarbons		STEX, VPH, Low level T.E.H.		-	X Coliforns NP		
			2	PI	SW	1/18/	16	005 X	8			¥													
			3	PWI	POTABL	6			\$			N													
			4	PWZ	POTABLE				Q			¥													
			5	PW3	POTABLE	1		V	×			N													
			6	PWH	POTABLE	5		-	- 2			Ŷ													
			7							100															
		-	8																			ć	916	IAN 1	8 15
			9																						
										-		-				F" 1	100							-	

Yellow : Mail

White: Maxxam

ATL FCD 00149 / Revision 10

Pink: Client

Attention: Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/01/26

Report #: R3866530 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B612323 Received: 2016/01/19, 13:21 Sample Matrix: Drinking Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	2	N/A	2016/01/22	N/A	SM 22 4500-CO2 D
Alkalinity	2	N/A	2016/01/25	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	2	N/A	2016/01/26	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	2	N/A	2016/01/25	ATL SOP 00020	SM 22 2120C m
Conductance - water	2	N/A	2016/01/22	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	2	N/A	2016/01/25	ATL SOP 00048	SM 22 2340 B
Metals Water Total MS	2	2016/01/22	2016/01/23	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	2	N/A	2016/01/26		Auto Calc.
Anion and Cation Sum	2	N/A	2016/01/25		Auto Calc.
Nitrogen Ammonia - water	2	N/A	2016/01/21	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	2	N/A	2016/01/26	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	2	N/A	2016/01/25	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	2	N/A	2016/01/26	ATL SOP 00018	ASTM D3867
pH (1)	2	N/A	2016/01/22	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	2	N/A	2016/01/25	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	1	N/A	2016/01/25	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 20C)	1	N/A	2016/01/26	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	1	N/A	2016/01/25	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	1	N/A	2016/01/26	ATL SOP 00049	Auto Calc.
Reactive Silica	2	N/A	2016/01/25	ATL SOP 00022	EPA 366.0 m
Sulphate	2	N/A	2016/01/26	ATL SOP 00023	EPA 375.4 R1978 m
Total Dissolved Solids (TDS calc)	2	N/A	2016/01/26		Auto Calc.
Organic carbon - Total (TOC) (2)	2	N/A	2016/01/22	ATL SOP 00037	SM 22 5310C m
Turbidity	2	N/A	2016/01/22	ATL SOP 00011	EPA 180.1 R2 m

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

⁽¹⁾ The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

⁽²⁾ TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/01/26

Report #: R3866530 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B612323 Received: 2016/01/19, 13:21

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp.

Client Project #: 20814 Sampler Initials: MR

ATLANTIC RCAP-MS TOTAL METALS IN WATER (DRINKING WATER)

Maxxam ID		BRQ739	BRQ740			
Sampling Date		2016/01/19	2016/01/19			
		11:15	12:00			
COC Number		B 159534	B 159534			
	UNITS	PW4	PW5	RDL	QC Batch	MDL
Calculated Parameters						
Anion Sum	me/L	1.52	2.60	N/A	4352741	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	40	37	1.0	4352737	0.20
Calculated TDS	mg/L	98	170	1.0	4352746	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	<1.0	1.0	4352737	0.20
Cation Sum	me/L	1.77	2.30	N/A	4352741	N/A
Hardness (CaCO3)	mg/L	42	<1.0	1.0	4352739	1.0
lon Balance (% Difference)	%	7.60	6.12	N/A	4352740	N/A
Langelier Index (@ 20C)	N/A	-1.18	NC		4352744	
Langelier Index (@ 4C)	N/A	-1.43	NC		4352745	
Nitrate (N)	mg/L	<0.050	0.13	0.050	4352742	N/A
Saturation pH (@ 20C)	N/A	8.61	NC		4352744	
Saturation pH (@ 4C)	N/A	8.87	NC		4352745	
Inorganics						
Total Alkalinity (Total as CaCO3)	mg/L	40	37	5.0	4355001	N/A
Dissolved Chloride (Cl)	mg/L	23	57	1.0	4355042	N/A
Colour	TCU	<5.0	<5.0	5.0	4355071	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.13	0.050	4355084	N/A
Nitrite (N)	mg/L	<0.010	<0.010	0.010	4355093	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.074	0.23	0.050	4352994	N/A
Total Organic Carbon (C)	mg/L	0.68	<0.50	0.50	4354732	N/A
Orthophosphate (P)	mg/L	0.018	0.36	0.010	4355079	N/A
рН	рН	7.44	7.30	N/A	4354331	N/A
Reactive Silica (SiO2)	mg/L	9.1	22	0.50	4355070	N/A
Dissolved Sulphate (SO4)	mg/L	3.0	11	2.0	4355062	N/A
Turbidity	NTU	32	2.1	0.10	4354453	0.10
Conductivity	uS/cm	140	240	1.0	4354332	N/A
Metals						
Total Aluminum (Al)	ug/L	44	5.9	5.0	4354329	N/A
Total Antimony (Sb)	ug/L	<1.0	<1.0	1.0	4354329	N/A
Total Arsenic (As)	ug/L	3.8	9.3	1.0	4354329	N/A
Total Barium (Ba)	ug/L	9.8	<1.0	1.0	4354329	N/A
Total Beryllium (Be)	ug/L	<1.0	<1.0	1.0	4354329	N/A
Total Bismuth (Bi)	ug/L	<2.0	<2.0	2.0	4354329	N/A
Total Boron (B)	ug/L	<50	<50	50	4354329	N/A
RDL = Reportable Detection Limit	-		· ·	- 		
QC Batch = Quality Control Batch						
N/A = Not Applicable						

Englobe Corp. Client Project #: 20814

Sampler Initials: MR

ATLANTIC RCAP-MS TOTAL METALS IN WATER (DRINKING WATER)

Maxxam ID		BRQ739	BRQ740			
Sampling Date		2016/01/19 11:15	2016/01/19 12:00			
COC Number		B 159534	B 159534			
	UNITS	PW4	PW5	RDL	QC Batch	MDL
Total Cadmium (Cd)	ug/L	<0.010	<0.010	0.010	4354329	N/A
Total Calcium (Ca)	ug/L	13000	<100	100	4354329	N/A
Total Chromium (Cr)	ug/L	<1.0	<1.0	1.0	4354329	N/A
Total Cobalt (Co)	ug/L	<0.40	<0.40	0.40	4354329	N/A
Total Copper (Cu)	ug/L	15	4.3	2.0	4354329	N/A
Total Iron (Fe)	ug/L	9200	150	50	4354329	N/A
Total Lead (Pb)	ug/L	1.5	<0.50	0.50	4354329	N/A
Total Magnesium (Mg)	ug/L	2200	<100	100	4354329	N/A
Total Manganese (Mn)	ug/L	87	<2.0	2.0	4354329	N/A
Total Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	4354329	N/A
Total Nickel (Ni)	ug/L	<2.0	<2.0	2.0	4354329	N/A
Total Phosphorus (P)	ug/L	220	370	100	4354329	N/A
Total Potassium (K)	ug/L	1100	380	100	4354329	N/A
Total Selenium (Se)	ug/L	<1.0	<1.0	1.0	4354329	N/A
Total Silver (Ag)	ug/L	<0.10	<0.10	0.10	4354329	N/A
Total Sodium (Na)	ug/L	13000	52000	100	4354329	N/A
Total Strontium (Sr)	ug/L	49	<2.0	2.0	4354329	N/A
Total Thallium (TI)	ug/L	<0.10	<0.10	0.10	4354329	N/A
Total Tin (Sn)	ug/L	<2.0	<2.0	2.0	4354329	N/A
Total Titanium (Ti)	ug/L	<2.0	<2.0	2.0	4354329	N/A
Total Uranium (U)	ug/L	2.9	0.63	0.10	4354329	N/A
Total Vanadium (V)	ug/L	<2.0	<2.0	2.0	4354329	N/A
Total Zinc (Zn)	ug/L	5.5	13	5.0	4354329	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp.

Client Project #: 20814 Sampler Initials: MR

TEST SUMMARY

Maxxam ID: BRQ739 Sample ID: PW4

Collected: 2016/01/19

Matrix: Drinking Water

Shipped:

Received: 2016/01/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4352737	N/A	2016/01/22	Automated Statchk
Alkalinity	KONE	4355001	N/A	2016/01/25	Arlene Rossiter
Chloride	KONE	4355042	N/A	2016/01/26	Mary Clancey
Colour	KONE	4355071	N/A	2016/01/25	Mary Clancey
Conductance - water	AT	4354332	N/A	2016/01/22	Tiffany Morash
Hardness (calculated as CaCO3)		4352739	N/A	2016/01/25	Automated Statchk
Metals Water Total MS	CICP/MS	4354329	2016/01/22	2016/01/23	Bryon Angevine
Ion Balance (% Difference)	CALC	4352740	N/A	2016/01/26	Automated Statchk
Anion and Cation Sum	CALC	4352741	N/A	2016/01/25	Automated Statchk
Nitrogen Ammonia - water	KONE	4352994	N/A	2016/01/21	Arlene Rossiter
Nitrogen - Nitrate + Nitrite	KONE	4355084	N/A	2016/01/26	Mary Clancey
Nitrogen - Nitrite	KONE	4355093	N/A	2016/01/25	Arlene Rossiter
Nitrogen - Nitrate (as N)	CALC	4352742	N/A	2016/01/26	Automated Statchk
pH	AT	4354331	N/A	2016/01/22	Tiffany Morash
Phosphorus - ortho	KONE	4355079	N/A	2016/01/25	Arlene Rossiter
Sat. pH and Langelier Index (@ 20C)	CALC	4352744	N/A	2016/01/26	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4352745	N/A	2016/01/26	Automated Statchk
Reactive Silica	KONE	4355070	N/A	2016/01/25	Mary Clancey
Sulphate	KONE	4355062	N/A	2016/01/26	Mary Clancey
Total Dissolved Solids (TDS calc)	CALC	4352746	N/A	2016/01/26	Automated Statchk
Organic carbon - Total (TOC)	TECH	4354732	N/A	2016/01/22	Soraya Merchant
Turbidity	TURB	4354453	N/A	2016/01/22	Tiffany Morash

Maxxam ID: BRQ740 Sample ID: PW5

Collected: 2016/01/19 Shipped:

Matrix: Drinking Water

Received: 2016/01/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4352737	N/A	2016/01/22	Automated Statchk
Alkalinity	KONE	4355001	N/A	2016/01/25	Arlene Rossiter
Chloride	KONE	4355042	N/A	2016/01/26	Mary Clancey
Colour	KONE	4355071	N/A	2016/01/25	Mary Clancey
Conductance - water	AT	4354332	N/A	2016/01/22	Tiffany Morash
Hardness (calculated as CaCO3)		4352739	N/A	2016/01/25	Automated Statchk
Metals Water Total MS	CICP/MS	4354329	2016/01/22	2016/01/23	Bryon Angevine
Ion Balance (% Difference)	CALC	4352740	N/A	2016/01/26	Automated Statchk
Anion and Cation Sum	CALC	4352741	N/A	2016/01/25	Automated Statchk
Nitrogen Ammonia - water	KONE	4352994	N/A	2016/01/21	Arlene Rossiter
Nitrogen - Nitrate + Nitrite	KONE	4355084	N/A	2016/01/26	Mary Clancey
Nitrogen - Nitrite	KONE	4355093	N/A	2016/01/25	Arlene Rossiter
Nitrogen - Nitrate (as N)	CALC	4352742	N/A	2016/01/26	Automated Statchk
рН	AT	4354331	N/A	2016/01/22	Tiffany Morash
Phosphorus - ortho	KONE	4355079	N/A	2016/01/25	Arlene Rossiter
Sat. pH and Langelier Index (@ 20C)	CALC	4352744	N/A	2016/01/25	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4352745	N/A	2016/01/25	Automated Statchk

Englobe Corp.

Client Project #: 20814 Sampler Initials: MR

TEST SUMMARY

Maxxam ID: BRQ740

Collected: 2016/01/19

Sample ID: PW5 Matrix: Drinking Water Shipped:

Received: 2016/01/19

Test Description Instrumentation Batch **Extracted Date Analyzed** Analyst 2016/01/25 Reactive Silica KONE 4355070 N/A Mary Clancey Sulphate KONE 4355062 N/A 2016/01/26 Mary Clancey Total Dissolved Solids (TDS calc) 2016/01/26 **Automated Statchk** CALC 4352746 N/A Organic carbon - Total (TOC) TECH 4354732 N/A 2016/01/22 Soraya Merchant Turbidity TURB 4354453 N/A 2016/01/22 Tiffany Morash

Englobe Corp. Client Project #: 20814 Sampler Initials: MR

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 4.3°C

Sample BRQ739-01: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample BRQ740-01: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Results relate only to the items tested.

Englobe Corp.

Client Project #: 20814 Sampler Initials: MR

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4352994	ARS	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/01/22		NC	%	80 - 120
4352994	ARS	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/01/21		103	%	80 - 120
4352994	ARS	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/01/21	< 0.050		mg/L	
4352994	ARS	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/01/22	2.2		%	20
4354329	BAN	Matrix Spike	Total Aluminum (AI)	2016/01/23		92	%	80 - 120
			Total Antimony (Sb)	2016/01/23		102	%	80 - 120
			Total Arsenic (As)	2016/01/23		91	%	80 - 120
			Total Barium (Ba)	2016/01/23		NC	%	80 - 120
			Total Beryllium (Be)	2016/01/23		98	%	80 - 120
			Total Bismuth (Bi)	2016/01/23		96	%	80 - 120
			Total Boron (B)	2016/01/23		101	%	80 - 120
			Total Cadmium (Cd)	2016/01/23		97	%	80 - 120
			Total Calcium (Ca)	2016/01/23		NC	%	80 - 120
			Total Chromium (Cr)	2016/01/23		91	%	80 - 120
			Total Cobalt (Co)	2016/01/23		92	%	80 - 120
			Total Copper (Cu)	2016/01/23		89	%	80 - 120
			Total Iron (Fe)	2016/01/23		93	%	80 - 120
			Total Lead (Pb)	2016/01/23		92	%	80 - 120
			Total Magnesium (Mg)	2016/01/23		98	%	80 - 120
			Total Manganese (Mn)	2016/01/23		93	%	80 - 120
			Total Molybdenum (Mo)	2016/01/23		102	%	80 - 120
			Total Nickel (Ni)	2016/01/23		92	%	80 - 120
			Total Phosphorus (P)	2016/01/23		100	%	80 - 120
			Total Potassium (K)	2016/01/23		96	%	80 - 120
			Total Selenium (Se)	2016/01/23		93	%	80 - 120
			Total Silver (Ag)	2016/01/23		95	%	80 - 120
			Total Sodium (Na)	2016/01/23		NC	%	80 - 120
			Total Strontium (Sr)	2016/01/23		NC	%	80 - 120
			Total Thallium (TI)	2016/01/23		96	%	80 - 120
			Total Tin (Sn)	2016/01/23		102	%	80 - 120
			Total Titanium (Ti)	2016/01/23		92	%	80 - 120
			Total Uranium (U)	2016/01/23		101	%	80 - 120
			Total Vanadium (V)	2016/01/23		96	%	80 - 120
			Total Zinc (Zn)	2016/01/23		92	%	80 - 120
4354329	BAN	Spiked Blank	Total Aluminum (Al)	2016/01/22		95	%	80 - 120
			Total Antimony (Sb)	2016/01/22		97	%	80 - 120
			Total Arsenic (As)	2016/01/22		91	%	80 - 120
			Total Barium (Ba)	2016/01/22		93	%	80 - 120
			Total Beryllium (Be)	2016/01/22		96	%	80 - 120
			Total Bismuth (Bi)	2016/01/22		101	%	80 - 120
			Total Boron (B)	2016/01/22		98	%	80 - 120
			Total Cadmium (Cd)	2016/01/22		97	%	80 - 120
			Total Calcium (Ca)	2016/01/22		97	%	80 - 120
			Total Chromium (Cr)	2016/01/22		91	%	80 - 120
			Total Cobalt (Co)	2016/01/22		94	%	80 - 120
			Total Copper (Cu)	2016/01/22		94	%	80 - 120
			Total Iron (Fe)	2016/01/22		98	%	80 - 120
			Total Lead (Pb)	2016/01/22		95	%	80 - 120
			Total Magnesium (Mg)	2016/01/22		102	%	80 - 120
			Total Manganese (Mn)	2016/01/22		95	%	80 - 120
			Total Molybdenum (Mo)	2016/01/22		99	%	80 - 120
			Total Nickel (Ni)	2016/01/22		95	%	80 - 120
			Total Phosphorus (P)	2016/01/22		101	%	80 - 120

Englobe Corp.

Client Project #: 20814 Sampler Initials: MR

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Potassium (K)	2016/01/22		97	%	80 - 120
			Total Selenium (Se)	2016/01/22		93	%	80 - 120
			Total Silver (Ag)	2016/01/22		95	%	80 - 120
			Total Sodium (Na)	2016/01/22		98	%	80 - 120
			Total Strontium (Sr)	2016/01/22		96	%	80 - 120
			Total Thallium (TI)	2016/01/22		100	%	80 - 120
			Total Tin (Sn)	2016/01/22		101	%	80 - 120
			Total Titanium (Ti)	2016/01/22		100	%	80 - 120
			Total Uranium (U)	2016/01/22		103	%	80 - 120
			Total Vanadium (V)	2016/01/22		97	%	80 - 120
			Total Zinc (Zn)	2016/01/22		96	%	80 - 120
4354329	BAN	Method Blank	Total Aluminum (Al)	2016/01/22	<5.0		ug/L	
			Total Antimony (Sb)	2016/01/22	<1.0		ug/L	
			Total Arsenic (As)	2016/01/22	<1.0		ug/L	
			Total Barium (Ba)	2016/01/22	<1.0		ug/L	
			Total Beryllium (Be)	2016/01/22	<1.0		ug/L	
			Total Bismuth (Bi)	2016/01/22	<2.0		ug/L	
			Total Boron (B)	2016/01/22	<50		ug/L	
			Total Cadmium (Cd)	2016/01/22	<0.010		ug/L	
			Total Calcium (Ca)	2016/01/22	<100		ug/L	
			Total Chromium (Cr)	2016/01/22	<1.0		ug/L	
			Total Cobalt (Co)	2016/01/22	<0.40		ug/L	
			Total Copper (Cu)	2016/01/22	<2.0		ug/L	
			Total Iron (Fe)	2016/01/22	<50		ug/L	
			Total Lead (Pb)	2016/01/22	<0.50		ug/L	
			Total Magnesium (Mg)	2016/01/22	<100		ug/L	
			Total Manganese (Mn)	2016/01/22	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/01/22	<2.0		ug/L	
			Total Nickel (Ni)	2016/01/22	<2.0		ug/L	
			Total Phosphorus (P)	2016/01/22	<100		ug/L	
			Total Potassium (K)	2016/01/22	<100		ug/L	
			Total Selenium (Se)	2016/01/22	<1.0		ug/L	
			Total Silver (Ag)	2016/01/22	<0.10		ug/L	
			Total Sodium (Na)	2016/01/22	<100		ug/L	
			Total Strontium (Sr)	2016/01/22	<2.0		ug/L	
			Total Thallium (TI)	2016/01/22	<0.10		ug/L	
			Total Tin (Sn)	2016/01/22	<2.0		ug/L	
			Total Titanium (Ti)	2016/01/22	<2.0		_	
			Total Uranium (U)	2016/01/22	<0.10		ug/L ug/L	
			Total Vanadium (V)	2016/01/22	<2.0		ug/L	
			Total Zinc (Zn)	2016/01/22	<5.0		ug/L ug/L	
4354329	BAN	RPD - Sample/Sample Dup	Total Arsenic (As)	2016/01/23	NC		ug/ L %	20
4354331	TMO	QC Standard	pH	2016/01/23	INC	100		97 - 103
			•		0.42	100	%	
4354331	TMO		pH Conductivity	2016/01/22	0.43	102	%	N/A
4354332 4354332	TMO	Spiked Blank Method Blank	Conductivity Conductivity	2016/01/22 2016/01/22	1.1,	103	% uS/cm	80 - 120
4354332	TIVIO	Method Blank	Conductivity	2016/01/22			u3/CIII	
					RDL=1.0			e=
4354332		RPD - Sample/Sample Dup	•	2016/01/22	0.29		%	25
4354453	TMO		Turbidity	2016/01/22		81	%	80 - 120
4354453		Method Blank	Turbidity	2016/01/22	<0.10		NTU	
4354453	TMO	RPD - Sample/Sample Dup		2016/01/22	18		%	20
4354732	SMT	Matrix Spike	Total Organic Carbon (C)	2016/01/22		NC	%	80 - 120
4354732	SMT	Spiked Blank	Total Organic Carbon (C)	2016/01/22		106	%	80 - 120

Englobe Corp.

Client Project #: 20814 Sampler Initials: MR

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4354732	SMT	Method Blank	Total Organic Carbon (C)	2016/01/22	<0.50		mg/L	
4354732	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2016/01/22	0.82		%	20
4355001	ARS	Matrix Spike	Total Alkalinity (Total as CaCO3)	2016/01/25		15 (1)	%	80 - 120
4355001	ARS	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/01/25		100	%	80 - 120
4355001	ARS	Method Blank	Total Alkalinity (Total as CaCO3)	2016/01/25	<5.0		mg/L	
4355001	ARS	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2016/01/25	NC		%	25
4355042	MCN	Matrix Spike	Dissolved Chloride (Cl)	2016/01/26		NC	%	80 - 120
4355042	MCN	QC Standard	Dissolved Chloride (CI)	2016/01/26		104	%	80 - 120
4355042	MCN	Spiked Blank	Dissolved Chloride (CI)	2016/01/26		97	%	80 - 120
4355042	MCN	Method Blank	Dissolved Chloride (CI)	2016/01/26	<1.0		mg/L	
4355042	MCN	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2016/01/26	0.24		%	25
4355062	MCN	Matrix Spike	Dissolved Sulphate (SO4)	2016/01/26		NC	%	80 - 120
4355062	MCN	Spiked Blank	Dissolved Sulphate (SO4)	2016/01/26		108	%	80 - 120
4355062	MCN	Method Blank	Dissolved Sulphate (SO4)	2016/01/26	<2.0		mg/L	
4355062	MCN	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2016/01/26	0.17		%	25
4355070	MCN	Matrix Spike	Reactive Silica (SiO2)	2016/01/25		NC	%	80 - 120
4355070	MCN	Spiked Blank	Reactive Silica (SiO2)	2016/01/25		100	%	80 - 120
4355070	MCN	Method Blank	Reactive Silica (SiO2)	2016/01/25	<0.50		mg/L	
4355070	MCN	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2016/01/25	1.3		%	25
4355071	MCN	Spiked Blank	Colour	2016/01/25		99	%	80 - 120
4355071	MCN	Method Blank	Colour	2016/01/25	<5.0		TCU	
4355071	MCN	RPD - Sample/Sample Dup	Colour	2016/01/25	NC		%	20
4355079	ARS	Matrix Spike	Orthophosphate (P)	2016/01/25		101	%	80 - 120
4355079	ARS	Spiked Blank	Orthophosphate (P)	2016/01/25		102	%	80 - 120
4355079	ARS	Method Blank	Orthophosphate (P)	2016/01/25	< 0.010		mg/L	
4355079	ARS	RPD - Sample/Sample Dup	Orthophosphate (P)	2016/01/25	0.35		%	25
4355084	MCN	Matrix Spike	Nitrate + Nitrite (N)	2016/01/26		52 (2)	%	80 - 120
4355084	MCN	Spiked Blank	Nitrate + Nitrite (N)	2016/01/26		107	%	80 - 120
4355084	MCN	Method Blank	Nitrate + Nitrite (N)	2016/01/26	<0.050		mg/L	
4355084	MCN	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2016/01/26	0.24		%	25
4355093	ARS	Matrix Spike	Nitrite (N)	2016/01/25		61 (3)	%	80 - 120
4355093	ARS	Spiked Blank	Nitrite (N)	2016/01/25		96	%	80 - 120
4355093	ARS	Method Blank	Nitrite (N)	2016/01/25	< 0.010		mg/L	
4355093	ARS	RPD - Sample/Sample Dup	Nitrite (N)	2016/01/25	NC		%	25

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

- (1) Poor spike recovery due to sample matrix, confirmed with repeat analysis.
- (2) Poor matrix spike recovery due to sample matrix, results confirmed by repeat analysis.
- (3) Poor spike recovery due to sample matrix, recovery confirmed with repeat analysis.

Englobe Corp. Client Project #: 20814 Sampler Initials: MR

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Original Signed

Mike MacGillivray, Scientific Specialist (Inorganics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	lab u										12				PO#					13	THEN	AROL	HAIF
			1ly:	INVOICE INFORMATION:			REPORT INF	ORM	NATIO	371			om in	voice):	Project # / Pl	nase# ~		6 J =			Stan		
4	(00)	9_	_	Company Name: ENGLOF	30		Company Na	ıme:		2	An	16			Project Name		los ation	1 -1			10 da		Γ
n	122	73		Contact Name: Aven Co	0		Contact Nan	ne:	_						Quote						If RUS		ecif
16	(4)	1		Address: Lisa Lower	alle		Address:					127										порс	
			ďμ	Postal Code							Post: Code	al >								_	Dro. n	chockel	0.0
,-	2	en	ge Tel	Email:		II (a)	Email:								Task Order #						Charg	e for #	1
Temp	Temp	Temp	Avera	Ph: Fax:			Ph:				Fax:				Sampled by	M	2						
) In	a	Check	C 51110-7.1	*Specify Matrix: Surface/Salt/Ground/Ta Potable/NonPotable/Tis Field Sample Identification	pwater/Sev sue/Soil/Si Matrix*	wage/Effludge/Me Date/Ti Sample	Jent/ tal/Seawater me # & type of bottles (IL V 200)	II.	Lab Filtration Required	RCAP-30 Choose Total or Diss Metals	RCAP-MS	Total Dig	etals	Metals & Mercury Default Available Digest Method Default Available Digest - for Doean Metals Total Bigest - for Doean	Mercury Merc	(required for COME Agricultural) RBCA Hydrocarbons (BTEX, C6-C32) Hydrocarbons Soil (Portable), NS Fuel	DO SOIL POLICY LOW LEVEL BTEX, CS-CC NB Potable Water	odus TPH Fractionation	PAH's	PAH's with Acridine, Quinoline			
				· ·		11.1	1 IXIDO	X			-					+	+	H		\dashv	+	+	-
				2 PWS	in leible	12:0		X			X		4							_		1	_
				3	18																		
				4																			
				5																			
				6																			Ţ
				7									-										i
		_		150				-	-							+					+	+	4
	Temp 1	Integrity /	6 4 3 Integrity / Checki	Integrity / Checklist by	Address: Postal Code Email: Checklist by Checklist by Location / Bin # *Specify Matrix: Surface/Salt/Ground/Ta Potable/NonPotable/Tis Field Sample Identification 1 Physical Code Email: Specify Matrix: Surface/Salt/Ground/Ta Potable/NonPotable/Tis Field Sample Identification 1 Physical Code 2 Postal Code Email: Specify Matrix: Surface/Salt/Ground/Ta Potable/NonPotable/Tis Field Sample Identification 1 Physical Code 2 Postal Code Email: Specify Matrix: Surface/Salt/Ground/Ta Potable/NonPotable/Tis Field Sample Identification 1 Physical Code Specify Matrix: Surface/Salt/Ground/Ta Potable/NonPotable/Tis Field Sample Identification 1 Physical Code Specify Matrix: Surface/Salt/Ground/Ta Potable/NonPotable/Tis Field Sample Identification	Address: Postal Code Email: Ph: Fax: Guideline Requirements / Detection Limits / 3 Integrity / Checklist by Location / Bin # *Specify Matrix: Surface/Salt/Ground/Tapwater/Sev Potable/NonPotable/Tissue/Solt/Si Field Sample Identification Matrix* 1 Pw - Postal Code *Specify Matrix: Surface/Salt/Ground/Tapwater/Sev Potable/NonPotable/Tissue/Solt/Si Field Sample Identification Matrix* 2 Pw - Postal Code *Specify Matrix: Surface/Salt/Ground/Tapwater/Sev Potable/NonPotable/Tissue/Solt/Si 5 6 6 7	Address: List Street Code Postal Code Email: Ph: Fax: Guideline Requirements / Detection Limits / Special I Integrity / Checklist by Location / Bin # *Specify Matrix: Surface/Salt/Ground/Tapwater/Sewage/Efflt Potable/NonPotable/Tissue/Soil/Sludge/Met Field Sample Identification Matrix* Date/Tissue/Soil/Sludge/Met 2 PW 11/7/2 3 1/1/7/2 3 4 5 6 7	Address: Post Code Post P	Address: Postal Code Email: Email: Ph: Fax: Ph: Guideline Requirements / Detection Limits / Special Instructions Integrity / Checklist by CHA Location / Bin # *Specify Matrix: Surface/Salt/Ground/Tapwater/Sewage/Effluent/ Potable/NonPotable/Tissue/Soil/Sludge/Metal/Seawater Field Sample Identification Matrix* Date/Time # & type of Sampled bottles 1 Phase Harris Ph: Fax: Ph: Ph: Guideline Requirements / Detection Limits / Special Instructions 1 Photography / Checklist by Potable/NonPotable/Tissue/Soil/Sludge/Metal/Seawater Field Sample Identification Matrix* Date/Time # & type of Sampled bottles 1 Photography / Checklist by Ph:	Address: Postal Email: Email: Email:	Address: List Cyperial Address: Postal Code	Address: / Postal Code Posta	Address: / Postal Code Posta	Address: Postal Code Postal Code Postal Code	Address: Postal Code Postal Code Postal Code	Address:	Address: Crode Postal Code Step Postal Step Postal Code S	Address:	Address: Crass Sylver Code Postal Code	Address: Postal Code Frax: Fax: F	Address: Postal Code	Postal Code Pre-search Postal Code Pre-search P	Address: Postal Code Postal Code Steep Postal Code Steep Postal Code Steep Postal Code Steep Ste

5																	
6																	
7																	
8																	
9																	
10																	
	Original	Signed	- 1	S/1/16	, ,	ime //2	0	Ori	gina	I Sig	ned		Date		Time		
														2016	JAN	19 1	3:
		White: Maxxam		Yellow:	Mail			Pink: Clien	nt				-	ATL FC	D 00149	/ Revisio	1 10
				Page 12	of 12												

Your Project #: 20814 Your C.O.C. #: B 159531

Attention: Aven Cole

Englobe Corp. 97 Troop Ave Dartmouth, NS CANADA B3B 2A7

Report Date: 2016/03/07

Report #: R3919491

Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B642244 Received: 2016/03/02, 08:05 Sample Matrix: Drinking Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	2	N/A	2016/03/03	N/A	SM 22 4500-CO2 D
Alkalinity	2	N/A	2016/03/03	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	2	N/A	2016/03/04	ATL SOP 00014	SM 22 4500-Cl- E m
TC/EC Drinking Water CFU/100mL	2	N/A	2016/03/02	ATL SOP 00096	OMOE E3407 V5.2
Colour	2	N/A	2016/03/04	ATL SOP 00020	SM 22 2120C m
Conductance - water	2	N/A	2016/03/03	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	2	N/A	2016/03/04	ATL SOP 00048	SM 22 2340 B
Metals Water Total MS	1	2016/03/03	2016/03/03	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	1	2016/03/03	2016/03/04	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	2	N/A	2016/03/07		Auto Calc.
Anion and Cation Sum	2	N/A	2016/03/04		Auto Calc.
Nitrogen Ammonia - water	2	N/A	2016/03/03	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	2	N/A	2016/03/04	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	2	N/A	2016/03/04	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	2	N/A	2016/03/07	ATL SOP 00018	ASTM D3867
pH (1)	2	N/A	2016/03/03	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	2	N/A	2016/03/04	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	2	N/A	2016/03/07	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	2	N/A	2016/03/07	ATL SOP 00049	Auto Calc.
Reactive Silica	1	N/A	2016/03/03	ATL SOP 00022	EPA 366.0 m
Reactive Silica	1	N/A	2016/03/04	ATL SOP 00022	EPA 366.0 m
Sulphate	2	N/A	2016/03/04	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	2	N/A	2016/03/07		Auto Calc.
Organic carbon - Total (TOC) (2)	2	N/A	2016/03/07	ATL SOP 00037	SM 22 5310C m
Turbidity	2	N/A	2016/03/07	ATL SOP 00011	EPA 180.1 R2 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

 $^{^{\}ast}$ RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

⁽¹⁾ The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

⁽²⁾ TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Your Project #: 20814 Your C.O.C. #: B 159531

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/03/07

Report #: R3919491 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B642244 Received: 2016/03/02, 08:05

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp. Client Project #: 20814

ATLANTIC RCAP-MS TOTAL METALS IN WATER (DRINKING WATER)

Maxxam ID		BYH173			BYH174	BYH174			
Sampling Date		2016/03/01 10:30			2016/03/01 10:10	2016/03/01 10:10			
COC Number		B 159531			B 159531	B 159531			
	UNITS	WELL 3 - 36 HR	RDL	QC Batch	WELL 4 - 36 HR	WELL 4 - 36 HR Lab-Dup	RDL	QC Batch	MDL
Calculated Parameters									
Anion Sum	me/L	4.10	N/A	4401239	5.36		N/A	4401239	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	25	1.0	4401234	29		1.0	4401234	0.20
Calculated TDS	mg/L	250	1.0	4401244	310		1.0	4401244	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4401234	<1.0		1.0	4401234	0.20
Cation Sum	me/L	3.74	N/A	4401239	4.88		N/A	4401239	N/A
Hardness (CaCO3)	mg/L	130	1.0	4401237	160		1.0	4401237	1.0
Ion Balance (% Difference)	%	4.59	N/A	4401238	4.69		N/A	4401238	N/A
Langelier Index (@ 20C)	N/A	-1.58		4401242	-1.22			4401242	
Langelier Index (@ 4C)	N/A	-1.83		4401243	-1.47			4401243	
Nitrate (N)	mg/L	<0.050	0.050	4401240	<0.050		0.050	4401240	N/A
Saturation pH (@ 20C)	N/A	8.38		4401242	8.22			4401242	
Saturation pH (@ 4C)	N/A	8.63		4401243	8.47			4401243	
Inorganics									
Total Alkalinity (Total as CaCO3)	mg/L	25	5.0	4403741	29		5.0	4403741	N/A
Dissolved Chloride (CI)	mg/L	120	1.0	4403747	160		1.0	4403747	N/A
Colour	TCU	<5.0	5.0	4403767	6.0		5.0	4403767	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	4403773	<0.050		0.050	4403773	N/A
Nitrite (N)	mg/L	<0.010	0.010	4403776	<0.010		0.010	4403776	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.32	0.050	4401543	0.087		0.050	4401543	N/A
Total Organic Carbon (C)	mg/L	<0.50	0.50	4405315	<0.50		0.50	4405315	N/A
Orthophosphate (P)	mg/L	0.36	0.010	4403750	0.30		0.010	4403750	N/A
рН	рН	6.80	N/A	4403142	7.00		N/A	4403142	N/A
Reactive Silica (SiO2)	mg/L	25	1.0	4403758	22		0.50	4403758	N/A
Dissolved Sulphate (SO4)	mg/L	6.8	2.0	4403753	6.9		2.0	4403753	N/A
Turbidity	NTU	0.58	0.10	4407713	0.83	0.86	0.10	4407713	0.10
Conductivity	uS/cm	440	1.0	4403136	590		1.0	4403136	N/A
Metals									
Total Aluminum (Al)	ug/L	7.2	5.0	4403066	7.9		5.0	4403068	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4403066	<1.0		1.0	4403068	N/A
Total Arsenic (As)	ug/L	5.1	1.0	4403066	3.8		1.0	4403068	N/A
Total Barium (Ba)	ug/L	370	1.0	4403066	320		1.0	4403068	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4403066	<1.0		1.0	4403068	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4403066	<2.0		2.0	4403068	N/A
DDI Dementable Detection Lincit					·	·			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp. Client Project #: 20814

ATLANTIC RCAP-MS TOTAL METALS IN WATER (DRINKING WATER)

Maxxam ID		BYH173			BYH174	BYH174			
Sampling Date		2016/03/01			2016/03/01	2016/03/01			
		10:30			10:10	10:10			
COC Number		B 159531			B 159531	B 159531			
	UNITS	WELL 3 - 36 HR	RDL	QC Batch	WELL 4 - 36 HR	WELL 4 - 36 HR Lab-Dup	RDL	QC Batch	MDL
Total Boron (B)	ug/L	<50	50	4403066	<50		50	4403068	N/A
Total Cadmium (Cd)	ug/L	0.021	0.010	4403066	0.035		0.010	4403068	N/A
Total Calcium (Ca)	ug/L	42000	100	4403066	54000		100	4403068	N/A
Total Chromium (Cr)	ug/L	<1.0	1.0	4403066	<1.0		1.0	4403068	N/A
Total Cobalt (Co)	ug/L	<0.40	0.40	4403066	<0.40		0.40	4403068	N/A
Total Copper (Cu)	ug/L	<2.0	2.0	4403066	<2.0		2.0	4403068	N/A
Total Iron (Fe)	ug/L	<50	50	4403066	160		50	4403068	N/A
Total Lead (Pb)	ug/L	<0.50	0.50	4403066	<0.50		0.50	4403068	N/A
Total Magnesium (Mg)	ug/L	4700	100	4403066	5800		100	4403068	N/A
Total Manganese (Mn)	ug/L	120	2.0	4403066	300		2.0	4403068	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4403066	<2.0		2.0	4403068	N/A
Total Nickel (Ni)	ug/L	<2.0	2.0	4403066	<2.0		2.0	4403068	N/A
Total Phosphorus (P)	ug/L	380	100	4403066	340		100	4403068	N/A
Total Potassium (K)	ug/L	2900	100	4403066	3900		100	4403068	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4403066	<1.0		1.0	4403068	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4403066	<0.10		0.10	4403068	N/A
Total Sodium (Na)	ug/L	26000	100	4403066	37000		100	4403068	N/A
Total Strontium (Sr)	ug/L	490	2.0	4403066	670		2.0	4403068	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4403066	<0.10		0.10	4403068	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4403066	<2.0		2.0	4403068	N/A
Total Titanium (Ti)	ug/L	<2.0	2.0	4403066	<2.0		2.0	4403068	N/A
Total Uranium (U)	ug/L	2.3	0.10	4403066	4.1		0.10	4403068	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4403066	<2.0		2.0	4403068	N/A
Total Zinc (Zn)	ug/L	<5.0	5.0	4403066	<5.0		5.0	4403068	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp. Client Project #: 20814

MICROBIOLOGY COLILERT (DRINKING WATER)

Maxxam ID		BYH173	BYH174			
Sampling Date		2016/03/01 10:30	2016/03/01 10:10			
COC Number		В 159531	B 159531			
	UNITS	WELL 3 - 36 HR	WELL 4 - 36 HR	RDL	QC Batch	MDL
Microbiological						
Escherichia coli	CFU/100mL	<1.0	<1.0	1.0	4401389	N/A
Total Coliforms	CFU/100mL	<1.0	2.0	1.0	4401389	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp. Client Project #: 20814

TEST SUMMARY

Maxxam ID: BYH173 Sample ID: WELL 3 - 36 HR Matrix: Drinking Water Collected: Shipped: 2016/03/01

Received: 2016/03/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4401234	N/A	2016/03/03	Automated Statchk
Alkalinity	KONE	4403741	N/A	2016/03/03	Nancy Rogers
Chloride	KONE	4403747	N/A	2016/03/04	Nancy Rogers
TC/EC Drinking Water CFU/100mL		4401389	N/A	2016/03/02	Jason Wang
Colour	KONE	4403767	N/A	2016/03/04	Nancy Rogers
Conductance - water	AT	4403136	N/A	2016/03/03	Tiffany Morash
Hardness (calculated as CaCO3)		4401237	N/A	2016/03/04	Automated Statchk
Metals Water Total MS	CICP/MS	4403066	2016/03/03	2016/03/03	Bryon Angevine
Ion Balance (% Difference)	CALC	4401238	N/A	2016/03/07	Automated Statchk
Anion and Cation Sum	CALC	4401239	N/A	2016/03/04	Automated Statchk
Nitrogen Ammonia - water	KONE	4401543	N/A	2016/03/03	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4403773	N/A	2016/03/04	Nancy Rogers
Nitrogen - Nitrite	KONE	4403776	N/A	2016/03/04	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4401240	N/A	2016/03/07	Automated Statchk
рН	AT	4403142	N/A	2016/03/03	Tiffany Morash
Phosphorus - ortho	KONE	4403750	N/A	2016/03/04	Mary Clancey
Sat. pH and Langelier Index (@ 20C)	CALC	4401242	N/A	2016/03/07	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4401243	N/A	2016/03/07	Automated Statchk
Reactive Silica	KONE	4403758	N/A	2016/03/04	Mary Clancey
Sulphate	KONE	4403753	N/A	2016/03/04	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4401244	N/A	2016/03/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4405315	N/A	2016/03/07	Soraya Merchant
Turbidity	TURB	4407713	N/A	2016/03/07	Tiffany Morash

Maxxam ID: BYH174 Sample ID: WELL 4 - 36 HR Matrix: Drinking Water **Collected:** 2016/03/01

Shipped:

Received: 2016/03/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4401234	N/A	2016/03/03	Automated Statchk
Alkalinity	KONE	4403741	N/A	2016/03/03	Nancy Rogers
Chloride	KONE	4403747	N/A	2016/03/04	Nancy Rogers
TC/EC Drinking Water CFU/100mL		4401389	N/A	2016/03/02	Jason Wang
Colour	KONE	4403767	N/A	2016/03/04	Nancy Rogers
Conductance - water	AT	4403136	N/A	2016/03/03	Tiffany Morash
Hardness (calculated as CaCO3)		4401237	N/A	2016/03/04	Automated Statchk
Metals Water Total MS	CICP/MS	4403068	2016/03/03	2016/03/04	Bryon Angevine
Ion Balance (% Difference)	CALC	4401238	N/A	2016/03/07	Automated Statchk
Anion and Cation Sum	CALC	4401239	N/A	2016/03/04	Automated Statchk
Nitrogen Ammonia - water	KONE	4401543	N/A	2016/03/03	Mary Clancey
Nitrogen - Nitrate + Nitrite	KONE	4403773	N/A	2016/03/04	Nancy Rogers
Nitrogen - Nitrite	KONE	4403776	N/A	2016/03/04	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4401240	N/A	2016/03/07	Automated Statchk
рН	AT	4403142	N/A	2016/03/03	Tiffany Morash
Phosphorus - ortho	KONE	4403750	N/A	2016/03/04	Mary Clancey
Sat. pH and Langelier Index (@ 20C)	CALC	4401242	N/A	2016/03/07	Automated Statchk

Englobe Corp. Client Project #: 20814

TEST SUMMARY

Maxxam ID: BYH174

Sample ID: WELL 4 - 36 HR Matrix: Drinking Water **Collected:** 2016/03/01 **Shipped:**

Received: 2016/03/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sat. pH and Langelier Index (@ 4C)	CALC	4401243	N/A	2016/03/07	Automated Statchk
Reactive Silica	KONE	4403758	N/A	2016/03/03	Mary Clancey
Sulphate	KONE	4403753	N/A	2016/03/04	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4401244	N/A	2016/03/07	Automated Statchk
Organic carbon - Total (TOC)	TECH	4405315	N/A	2016/03/07	Soraya Merchant
Turbidity	TURB	4407713	N/A	2016/03/07	Tiffany Morash

Maxxam ID: BYH174 Dup Sample ID: WELL 4 - 36 HR Matrix: Drinking Water **Collected:** 2016/03/01

Shipped:

Received: 2016/03/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Turbidity	TURB	4407713	N/A	2016/03/07	Tiffany Morash

Englobe Corp. Client Project #: 20814

GENERAL COMMENTS

Each te	emperature is the av	erage of up to t	nree cooler temperatures taken at receipt
	Package 1	0.0°C	
Result	s relate only to the i	tems tested.	

Englobe Corp. Client Project #: 20814

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	LINITS	QC Limits
4401389	JWA	Method Blank	Escherichia coli	2016/03/02	<1.0	Recovery	CFU/100	
4401303	JVVA	Wethou Blank	Total Coliforms	2016/03/02	<1.0		CFU/100	
4401543	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/03/03	<1.0	NC	%	80 - 120
	MCN		Nitrogen (Ammonia Nitrogen)	2016/03/03		102	%	80 - 120
	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/03/03	<0.050	102	mg/L	80 - 120
	MCN	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/03/03	1.4		111g/L %	20
4401343	BAN	Matrix Spike		2016/03/03	1.4	NC	% %	80 - 120
4403000	DAIN	Matrix Spike	Total Antimony (Sh)					
			Total Arcanic (As)	2016/03/03 2016/03/03		101 93	% %	80 - 120 80 - 120
			Total Arsenic (As)	2016/03/03				
			Total Barium (Ba)			95 05	%	80 - 120
			Total Biggs 4b (Bi)	2016/03/03		95	%	80 - 120
			Total Barrar (B)	2016/03/03		99	%	80 - 120
			Total Boron (B)	2016/03/03		95	%	80 - 120
			Total Cadmium (Cd)	2016/03/03		99	%	80 - 120
			Total Calcium (Ca)	2016/03/03		97	%	80 - 120
			Total Chromium (Cr)	2016/03/03		95	%	80 - 120
			Total Cobalt (Co)	2016/03/03		96	%	80 - 120
			Total Copper (Cu)	2016/03/03		96	%	80 - 120
			Total Iron (Fe)	2016/03/03		98	%	80 - 120
			Total Lead (Pb)	2016/03/03		96	%	80 - 120
			Total Magnesium (Mg)	2016/03/03		100	%	80 - 120
			Total Manganese (Mn)	2016/03/03		96	%	80 - 120
			Total Molybdenum (Mo)	2016/03/03		101	%	80 - 120
			Total Nickel (Ni)	2016/03/03		96	%	80 - 120
			Total Phosphorus (P)	2016/03/03		100	%	80 - 120
			Total Potassium (K)	2016/03/03		101	%	80 - 120
			Total Selenium (Se)	2016/03/03		95	%	80 - 120
			Total Silver (Ag)	2016/03/03		100	%	80 - 120
			Total Sodium (Na)	2016/03/03		NC	%	80 - 120
			Total Strontium (Sr)	2016/03/03		95	%	80 - 120
			Total Thallium (TI)	2016/03/03		97	%	80 - 120
			Total Tin (Sn)	2016/03/03		101	%	80 - 120
			Total Titanium (Ti)	2016/03/03		97	%	80 - 120
			Total Uranium (U)	2016/03/03		103	%	80 - 120
			Total Vanadium (V)	2016/03/03		95	%	80 - 120
			Total Zinc (Zn)	2016/03/03		95	%	80 - 120
4403066	BAN	Spiked Blank	Total Aluminum (Al)	2016/03/03		102	%	80 - 120
			Total Antimony (Sb)	2016/03/03		100	%	80 - 120
			Total Arsenic (As)	2016/03/03		93	%	80 - 120
			Total Barium (Ba)	2016/03/03		96	%	80 - 120
			Total Beryllium (Be)	2016/03/03		94	%	80 - 120
			Total Bismuth (Bi)	2016/03/03		99	%	80 - 120
			Total Boron (B)	2016/03/03		95	%	80 - 120
			Total Cadmium (Cd)	2016/03/03		98	%	80 - 120
			Total Calcium (Ca)	2016/03/03		97	%	80 - 120
			Total Chromium (Cr)	2016/03/03		95	%	80 - 120
			Total Cobalt (Co)	2016/03/03		97	%	80 - 120
			Total Copper (Cu)	2016/03/03		96	%	80 - 120
			Total Iron (Fe)	2016/03/03		99	%	80 - 120
			Total Lead (Pb)	2016/03/03		96	%	80 - 120
			Total Magnesium (Mg)	2016/03/03		101	%	80 - 120
			Total Manganese (Mn)	2016/03/03		97	%	80 - 120
			Total Molybdenum (Mo)	2016/03/03		100	%	80 - 120
			Total Nickel (Ni)	2016/03/03		98		

Englobe Corp. Client Project #: 20814

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Phosphorus (P)	2016/03/03		100	%	80 - 120
			Total Potassium (K)	2016/03/03		102	%	80 - 120
			Total Selenium (Se)	2016/03/03		95	%	80 - 120
			Total Silver (Ag)	2016/03/03		99	%	80 - 120
			Total Sodium (Na)	2016/03/03		102	%	80 - 120
			Total Strontium (Sr)	2016/03/03		97	%	80 - 120
			Total Thallium (TI)	2016/03/03		97	%	80 - 120
			Total Tin (Sn)	2016/03/03		102	%	80 - 120
			Total Titanium (Ti)	2016/03/03		96	%	80 - 120
			Total Uranium (U)	2016/03/03		104	%	80 - 120
			Total Vanadium (V)	2016/03/03		95	%	80 - 120
			Total Zinc (Zn)	2016/03/03		96	%	80 - 120
4403066	BAN	Method Blank	Total Aluminum (AI)	2016/03/03	5.6,		ug/L	
					RDL=5.0			
			Total Antimony (Sb)	2016/03/03	<1.0		ug/L	
			Total Arsenic (As)	2016/03/03	<1.0		ug/L	
			Total Barium (Ba)	2016/03/03	<1.0		ug/L	
			Total Beryllium (Be)	2016/03/03	<1.0		ug/L	
			Total Bismuth (Bi)	2016/03/03	<2.0		ug/L	
			Total Boron (B)	2016/03/03	<50		ug/L	
			Total Cadmium (Cd)	2016/03/03	< 0.010		ug/L	
			Total Calcium (Ca)	2016/03/03	<100		ug/L	
			Total Chromium (Cr)	2016/03/03	<1.0		ug/L	
			Total Cobalt (Co)	2016/03/03	< 0.40		ug/L	
			Total Copper (Cu)	2016/03/03	<2.0		ug/L	
			Total Iron (Fe)	2016/03/03	<50		ug/L	
			Total Lead (Pb)	2016/03/03	<0.50		ug/L	
			Total Magnesium (Mg)	2016/03/03	<100		ug/L	
			Total Manganese (Mn)	2016/03/03	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/03/03	<2.0		ug/L	
			Total Nickel (Ni)	2016/03/03	<2.0		ug/L	
			Total Phosphorus (P)	2016/03/03	<100		ug/L	
			Total Potassium (K)	2016/03/03	<100		ug/L	
			Total Selenium (Se)	2016/03/03	<1.0		ug/L	
			Total Silver (Ag)	2016/03/03	< 0.10		ug/L	
			Total Sodium (Na)	2016/03/03	<100		ug/L	
			Total Strontium (Sr)	2016/03/03	<2.0		ug/L	
			Total Thallium (TI)	2016/03/03	< 0.10		ug/L	
			Total Tin (Sn)	2016/03/03	<2.0		ug/L	
			Total Titanium (Ti)	2016/03/03	<2.0		ug/L	
			Total Uranium (U)	2016/03/03	< 0.10		ug/L	
			Total Vanadium (V)	2016/03/03	<2.0		ug/L	
			Total Zinc (Zn)	2016/03/03	<5.0		ug/L	
1403066	BAN	RPD - Sample/Sample Dup	Total Iron (Fe)	2016/03/03	NC		%	20
			Total Nickel (Ni)	2016/03/03	NC		%	20
			Total Vanadium (V)	2016/03/03	NC		%	20
1403068	BAN	Matrix Spike	Total Aluminum (AI)	2016/03/04		101	%	80 - 120
			Total Antimony (Sb)	2016/03/04		NC	%	80 - 120
			Total Arsenic (As)	2016/03/04		94	%	80 - 120
			Total Barium (Ba)	2016/03/04		97	%	80 - 120
			Total Beryllium (Be)	2016/03/04		97	%	80 - 120
			Total Bismuth (Bi)	2016/03/04		99	%	80 - 120
			Total Boron (B)	2016/03/04		98	%	80 - 120
			Total Cadmium (Cd)	2016/03/04		100	%	80 - 120

Englobe Corp. Client Project #: 20814

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
		•	Total Calcium (Ca)	2016/03/04		NC	%	80 - 120
			Total Chromium (Cr)	2016/03/04		96	%	80 - 120
			Total Cobalt (Co)	2016/03/04		98	%	80 - 120
			Total Copper (Cu)	2016/03/04		97	%	80 - 120
			Total Iron (Fe)	2016/03/04		100	%	80 - 120
			Total Lead (Pb)	2016/03/04		97	%	80 - 120
			Total Magnesium (Mg)	2016/03/04		100	%	80 - 120
			Total Manganese (Mn)	2016/03/04		NC	%	80 - 120
			Total Molybdenum (Mo)	2016/03/04		101	%	80 - 120
			Total Nickel (Ni)	2016/03/04		97	%	80 - 120
			Total Phosphorus (P)	2016/03/04		100	%	80 - 120
			Total Potassium (K)	2016/03/04		NC	%	80 - 120
			Total Selenium (Se)	2016/03/04		92	%	80 - 120
			Total Silver (Ag)	2016/03/04		101	%	80 - 120
			Total Sodium (Na)	2016/03/04		NC	%	80 - 120
			Total Strontium (Sr)	2016/03/04		NC	%	80 - 120
			Total Thallium (TI)	2016/03/04		98	%	80 - 120
			Total Tin (Sn)	2016/03/04		105	%	80 - 120
			Total Titanium (Ti)	2016/03/04		100	%	80 - 120
			Total Uranium (U)	2016/03/04		103	%	80 - 120
			Total Vanadium (V)	2016/03/04		97	%	80 - 120
			Total Zinc (Zn)	2016/03/04		98	%	80 - 120
4403068	BAN	Spiked Blank	Total Aluminum (AI)	2016/03/03		98	%	80 - 120
4403000	D/ (14	эриса Бапк	Total Antimony (Sb)	2016/03/03		99	%	80 - 120
			Total Arsenic (As)	2016/03/03		91	%	80 - 120
			Total Barium (Ba)	2016/03/03		96	%	80 - 120
			Total Beryllium (Be)	2016/03/03		96	%	80 - 120
			Total Bismuth (Bi)	2016/03/03		100	%	80 - 120
			Total Boron (B)	2016/03/03		96	%	80 - 120
			Total Cadmium (Cd)	2016/03/03		98	%	80 - 120
			Total Calcium (Ca)	2016/03/03		97	%	80 - 120
			Total Chromium (Cr)	2016/03/03		95	%	80 - 120
			Total Cobalt (Co)	2016/03/03		95 97	%	80 - 120
			Total Copper (Cu)	2016/03/03		96	% %	80 - 120
			Total Iron (Fe)	2016/03/03		99	%	80 - 120
			Total Holf (Fe) Total Lead (Pb)	2016/03/03		96	% %	80 - 120
			Total Magnesium (Mg)	2016/03/03		99	% %	80 - 120
			Total Magnesium (Mg) Total Manganese (Mn)	2016/03/03		99 97	% %	80 - 120 80 - 120
			Total Maligaliese (Mil) Total Molybdenum (Mo)	2016/03/03		100	% %	80 - 120
			Total Nickel (Ni)	2016/03/03		97	% %	80 - 120
			` '				% %	
			Total Potassium (K)	2016/03/03		98 102		80 - 120
			Total Potassium (K) Total Selenium (Se)	2016/03/03 2016/03/03		102	%	80 - 120
			` ,			92	%	80 - 120
			Total Sodium (Na)	2016/03/03		99 100	%	80 - 120 80 - 120
			Total Strontium (Sr)	2016/03/03		100	%	80 - 120
			Total Strontium (Sr)	2016/03/03		95 07	%	80 - 120
			Total Thallium (TI)	2016/03/03		97 102	%	80 - 120 80 - 120
			Total Titonium (Ti)	2016/03/03		103	%	80 - 120
			Total Harrison (H)	2016/03/03		96	%	80 - 120
			Total Vanadium (U)	2016/03/03		102	%	80 - 120
			Total Vanadium (V)	2016/03/03		96	%	80 - 120
44600==			Total Zinc (Zn)	2016/03/03		96	%	80 - 120
4403068	BAN	Method Blank	Total Aluminum (Al)	2016/03/03	<5.0		ug/L	
			Total Antimony (Sb)	2016/03/03	<1.0		ug/L	

Englobe Corp. Client Project #: 20814

QA/QC				Date		%
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery UNITS QC Lin
			Total Arsenic (As)	2016/03/03	<1.0	ug/L
			Total Barium (Ba)	2016/03/03	<1.0	ug/L
			Total Beryllium (Be)	2016/03/03	<1.0	ug/L
			Total Bismuth (Bi)	2016/03/03	<2.0	ug/L
			Total Boron (B)	2016/03/03	<50	ug/L
			Total Cadmium (Cd)	2016/03/03	<0.010	ug/L
			Total Calcium (Ca)	2016/03/03	<100	ug/L
			Total Chromium (Cr)	2016/03/03	<1.0	ug/L
			Total Cobalt (Co)	2016/03/03	< 0.40	ug/L
			Total Copper (Cu)	2016/03/03	<2.0	ug/L
			Total Iron (Fe)	2016/03/03	<50	ug/L
			Total Lead (Pb)	2016/03/03	< 0.50	ug/L
			Total Magnesium (Mg)	2016/03/03	<100	ug/L
			Total Manganese (Mn)	2016/03/03	<2.0	ug/L
			Total Molybdenum (Mo)	2016/03/03	<2.0	ug/L
				2016/03/03		
			Total Phosphorus (P)	2016/03/03	<2.0 <100	ug/L ug/L
			Total Phosphorus (P) Total Potassium (K)	2016/03/03		
			` '	2016/03/03	<100	ug/L
			Total Selenium (Se)		<1.0	ug/L
			Total Silver (Ag)	2016/03/03	< 0.10	ug/L
			Total Sodium (Na)	2016/03/03	<100	ug/L
			Total Strontium (Sr)	2016/03/03	<2.0	ug/L
			Total Thallium (TI)	2016/03/03	<0.10	ug/L
			Total Tin (Sn)	2016/03/03	<2.0	ug/L
			Total Titanium (Ti)	2016/03/03	<2.0	ug/L
			Total Uranium (U)	2016/03/03	<0.10	ug/L
			Total Vanadium (V)	2016/03/03	<2.0	ug/L
			Total Zinc (Zn)	2016/03/03	<5.0	ug/L
403068	BAN	RPD - Sample/Sample Dup	Total Aluminum (Al)	2016/03/04	1.4	% 20
			Total Antimony (Sb)	2016/03/04	0.69	% 20
			Total Arsenic (As)	2016/03/04	NC	% 20
			Total Barium (Ba)	2016/03/04	0.47	% 20
			Total Beryllium (Be)	2016/03/04	NC	% 20
			Total Bismuth (Bi)	2016/03/04	NC	% 20
			Total Boron (B)	2016/03/04	NC	% 20
			Total Cadmium (Cd)	2016/03/04	0.94	% 20
			Total Calcium (Ca)	2016/03/04	1.5	% 20
			Total Chromium (Cr)	2016/03/04	NC	% 20
			Total Cobalt (Co)	2016/03/04	NC	% 20
			Total Copper (Cu)	2016/03/04	NC	% 20
			Total Iron (Fe)	2016/03/04	NC	% 20
			Total Lead (Pb)	2016/03/04	0.84	% 20
			Total Magnesium (Mg)	2016/03/04	1.4	% 20
			Total Manganese (Mn)	2016/03/04	0.22	% 20
			Total Molybdenum (Mo)	2016/03/04	NC	% 20
			Total Nickel (Ni)	2016/03/04	NC	% 20
			Total Phosphorus (P)	2016/03/04	NC	% 20
			Total Potassium (K)	2016/03/04	1.8	% 20 % 20
			Total Selenium (Se)	2016/03/04	1.8	% 20 % 20
			Total Silver (Ag)	2016/03/04	NC	% 20 % 20
			Total Sodium (Na)	2016/03/04	0.099	% 20 % 30
			Total Strontium (Sr)	2016/03/04	0.82	% 20 % 30
			Total Thallium (TI)	2016/03/04	NC	% 20
			Total Tin (Sn)	2016/03/04	NC	% 20

Englobe Corp. Client Project #: 20814

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Titanium (Ti)	2016/03/04	7.0	•	%	20
			Total Uranium (U)	2016/03/04	NC		%	20
			Total Vanadium (V)	2016/03/04	NC		%	20
			Total Zinc (Zn)	2016/03/04	NC		%	20
4403136	TMO	Spiked Blank	Conductivity	2016/03/03		100	%	80 - 120
4403136		Method Blank	Conductivity	2016/03/03	1.6,		uS/cm	
			,	,,	RDL=1.0		,	
4403136	TMO	RPD - Sample/Sample Dup	Conductivity	2016/03/03	0.27		%	25
4403142	TMO	QC Standard	pH	2016/03/03		100	%	97 - 103
4403142		RPD - Sample/Sample Dup	•	2016/03/03	2.8		%	N/A
4403741	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2016/03/03	0	NC	%	80 - 120
4403741	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/03/03		102	%	80 - 120
4403741	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2016/03/03	<5.0	102	mg/L	00 120
4403741	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2016/03/03	1.9		%	25
4403747	NRG	Matrix Spike	Dissolved Chloride (CI)	2016/03/04	1.5	96	%	80 - 120
4403747	NRG	QC Standard	Dissolved Chloride (CI)	2016/03/04		101	%	80 - 120
4403747		Spiked Blank	Dissolved Chloride (CI)	2016/03/04		104	%	80 - 120
4403747		Method Blank	Dissolved Chloride (CI)	2016/03/04	<1.0	104	mg/L	00 120
4403747	NRG	RPD - Sample/Sample Dup	* *	2016/03/04	NC		111g/L	25
4403747	MCN	Matrix Spike	Orthophosphate (P)	2016/03/04	INC	95	% %	80 - 120
4403750	MCN	Spiked Blank	Orthophosphate (P)	2016/03/04		93 97	% %	80 - 120
4403750		•	Orthophosphate (P)		<0.010	37		60 - 120
4403750	MCN	RPD - Sample/Sample Dup	Orthophosphate (P)	2016/03/04 2016/03/04	NC		mg/L %	25
4403753	NRG	Matrix Spike	Dissolved Sulphate (SO4)	2016/03/04	INC	NC	% %	80 - 120
4403753		Spiked Blank	• • • •			100	% %	80 - 120
		•	Dissolved Sulphate (SO4)	2016/03/04	-2.0	100		6U - 12U
4403753	NRG NRG	Method Blank	Dissolved Sulphate (SO4)	2016/03/04	<2.0		mg/L	25
4403753 4403758		RPD - Sample/Sample Dup		2016/03/04	2.0	06	%	25
	MCN	Matrix Spike	Reactive Silica (SiO2)	2016/03/03		96 95	% %	80 - 120 80 - 120
4403758	MCN	Spiked Blank	Reactive Silica (SiO2)	2016/03/03	40 FO	95		80 - 120
4403758	MCN	Method Blank	Reactive Silica (SiO2)	2016/03/03	< 0.50		mg/L	25
4403758	MCN	RPD - Sample/Sample Dup		2016/03/03	0.075	00	%	25
4403767	NRG	Spiked Blank	Colour	2016/03/04	.E.O	99	% TCU	80 - 120
4403767		Method Blank	Colour	2016/03/04	<5.0		TCU	20
4403767	NRG	RPD - Sample/Sample Dup		2016/03/04	NC	404	%	20
4403773	NRG	Matrix Spike	Nitrate + Nitrite (N)	2016/03/04		104	%	80 - 120
4403773	NRG	Spiked Blank	Nitrate + Nitrite (N)	2016/03/04	-0.050	102	%	80 - 120
4403773		Method Blank	Nitrate + Nitrite (N)	2016/03/04	<0.050		mg/L	25
4403773		RPD - Sample/Sample Dup		2016/03/04	NC	0.4	%	25
4403776		Matrix Spike	Nitrite (N)	2016/03/04		94	%	80 - 120
4403776	NRG	Spiked Blank	Nitrite (N)	2016/03/04		99	%	80 - 120
4403776	NRG	Method Blank	Nitrite (N)	2016/03/04	<0.010		mg/L	e-
4403776	NRG	RPD - Sample/Sample Dup		2016/03/04	NC	_	%	25
4405315	SMT	Matrix Spike	Total Organic Carbon (C)	2016/03/07		118	%	80 - 120
4405315	SMT	Spiked Blank	Total Organic Carbon (C)	2016/03/07	_	106	%	80 - 120
4405315	SMT	Method Blank	Total Organic Carbon (C)	2016/03/07	<0.50		mg/L	
4405315	SMT	RPD - Sample/Sample Dup		2016/03/07	1.5		%	20
4407713	TMO	QC Standard	Turbidity	2016/03/07	_	89	%	80 - 120
4407713	TMO	Method Blank	Turbidity	2016/03/07	<0.10		NTU	

Englobe Corp.
Client Project #: 20814

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4407713	TMO	RPD - Sample/Sample Dup	Turbidity	2016/03/07	3.6		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Englobe Corp. Client Project #: 20814

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Original Signed
Andrew VanWychen, Bedford Micro
Original Signed

Mike MacGillivray, Scientific Specialist (Inorganics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

1	13	
M	axxam	1
	Analytic	s

200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 1G9 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227 49 Elizabeth ANs., St. Johns, NL. A14 1199

Tel: 709-754-8612

Toll Free: 1-888-492-7227

90 Esplanade Sydney, NS B1P 1A1

Tel: 902-567-1255

Tel: 902-567-1255

Tel: 902-567-1255

Tel: 902-567-1255

Tel: 902-567-1255

Toll Free: 1-888-535-7770

MAXXAM Chain of Custody Record coc# B 159531

Analytics International Corporation	www.maxxamanalytics.com E-mail: Clientservices	Dedicionemaxama	1141y105,50111	PO#	TURNAROUND TIME
This column for lab use only:	INVOICE INFORMATION:	REPORT INFOR	MATION (if differs from invoice):	Davis A // Dhana A	Standard 🔯
Client Code	Company Name: Diglobe	Company Name	: SAME	2081-1	
Maxxam Job #	Contact Name: Aren Cole	Contact Name:	A	Project Name / Site Location	10 day
01.100111	Address: Liza Ladanen	Address:		Quote	If RUSH Specify Date:
B642244	Postal Code		Postal Code	Site #	
Ssent act		W.	Oude	Task Order #	Pre-schedule rush work
Cooler ID Seal Present Seal Intact Temp 1 Temp 2 Temp 3 Average Tem	Email:	Email:		Sampled by	Charge for # Jars used but
	Ph: Fax: Guideline Requirements / Detection Limits / Specia	Ph:	Fax:	ш	not submitted
0+1 1			Filtration Required AP-30 Total or Diss Metals AP-MS (Cotal or Diss Metals Total Digest (Default Method) for wall water, surface water Dissolved for ground water Mercury Metals & Mercury Metals & Mercury Metals Total Digest Method Metals Total Digest For Cocan Metals Total Digest Method Metals Total Digest For Cocan Metals Total	Mercury Low level by Cold Vapour AA Selentium (low level by Cold Vapour AA Selentium (low level) Red of COME Residential, Parklands, Apricultural) Hot Water soluble Boron (required for COME Agricultural) RECA Hydrocarbons (BECA Hydrocarbons FIETS, C6-C32) Hydrocarbons Soil (Potable) NS Fuel Ol Spill Bulbur Low Level BTEX, C8-C32 Ol Spill Bulbur Low level T.E.M. TPH Fractionation PAH's PAH's	MPN
		pex	Filtration Required Choose P-30 Total or Diss Met Choise Met Chois	Mercury Selentum (Nove leg) Pg of the Colon Weel by Cold Vapour AA Selentum (Nove leg) Pg of the Colon Weel Brog of the Colon Residential. Parkands. Agricultural) Hot Water soluble Boron (required for COME Agricultural) RBCA Hydrocarbons (RTEX, C6-C32) Hydrocarbons Soil (Potable), NS Fig. (Norcarbons Soil (Potable), NS Fig. (Norcarbons Soil (Potable), NS Fig. (Norcarbons Soil (Potable), NS Fig. (RTEX, VPH, Low level T.E.H. TPH Fractionation PAH's PAH's with Acridine, Quinoline	MPN
	-	989	Choc Choc Choc Choc Choc Choc Choc Choc	Vapon ands. Vapon ands. Vapon ons (Potab level I level I	2
Integrity Integrity / Checklist by		0.00	otal ootal o	Cold (Cold Octobro) (39
YES ® Sm		Del	Filtration Req	Mercury Low level by Cold V Beachine (low level Residential) Parkian Hot Water soluble (required for COME (BTEX, CE-CS2) Hydrocarbors Soil (P BOS III) Palicy Low I NB Potable Water BTEX, VPH, Low Is TPH Fractionation PAH's with Acridin	
Labelled by Location / Bin #	*Specify Matrix: Surface/Salt/Ground/Tapwater/Sewage/E Potable/NonPotable/Tissue/Soil/Sludge/N	ffluent/ //etal/Seawater	Filtration To Table 1998 Total Diges for well wat for ground if Metals & M Metals & M Metals Total Metals Total Metals Total	Mercul Me	32
	ried Sample Identification Matrix Sam	ffluent/ letal/Seawater Time # & type of pled bottles	Lab Filtration Required RCAP-30 Total Orlos RCAP-MS Cotal or Diss Total Digest (Default Me Mercury	etals Soil Hydrocarbons	10/2
	1./3	100 0x 100	N		XX
	1 Well 3-36 h- 600 16	opm 11	Z Z		22
	3	-			
	4				
	5				
	6				
	7				
NI NI	8				
	9				
	10				
	Original Sign	ad a Date	Time RECEIVED BY: Origin	(Signature/Print) Date	Time
		Ju 2/5//	Jilgii		
				2	916 MAR 2 8:05
	White: Maxxam	Yellow :	Mail Pink: Client	A	TL FCD 00149 / Revision 10

Your Project #: 20814 Your C.O.C. #: 550949-01-01

Attention:Lisa Ladouceur

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/03/10

Report #: R3924088 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B645502 Received: 2016/03/04, 12:14

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	5	N/A	2016/03/09	N/A	SM 22 4500-CO2 D
Alkalinity	5	N/A	2016/03/08	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	5	N/A	2016/03/08	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	5	N/A	2016/03/08	ATL SOP 00020	SM 22 2120C m
Conductance - water	5	N/A	2016/03/08	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	5	N/A	2016/03/10	ATL SOP 00048	SM 22 2340 B
Metals Water Total MS	5	2016/03/09	2016/03/09	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	5	N/A	2016/03/10		Auto Calc.
Anion and Cation Sum	5	N/A	2016/03/10		Auto Calc.
Nitrogen Ammonia - water	5	N/A	2016/03/09	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	5	N/A	2016/03/09	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	5	N/A	2016/03/09	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	5	N/A	2016/03/10	ATL SOP 00018	ASTM D3867
pH (1)	5	N/A	2016/03/08	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	5	N/A	2016/03/08	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	5	N/A	2016/03/10	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	5	N/A	2016/03/10	ATL SOP 00049	Auto Calc.
Reactive Silica	5	N/A	2016/03/08	ATL SOP 00022	EPA 366.0 m
Sulphate	5	N/A	2016/03/08	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	5	N/A	2016/03/10		Auto Calc.
Organic carbon - Total (TOC) (2)	5	N/A	2016/03/08	ATL SOP 00037	SM 22 5310C m
Turbidity	5	N/A	2016/03/08	ATL SOP 00011	EPA 180.1 R2 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

⁽¹⁾ The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

⁽²⁾ TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Your Project #: 20814 Your C.O.C. #: 550949-01-01

Attention:Lisa Ladouceur

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/03/10

Report #: R3924088 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B645502 Received: 2016/03/04, 12:14

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp. Client Project #: 20814

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		BYY308		BYY309		BYY310	BYY311			
Sampling Date		2016/03/04		2016/03/04		2016/03/04	2016/03/04			
COC Number		550949-01-01		550949-01-01		550949-01-01	550949-01-01			
	UNITS	PW1	RDL	PW2	RDL	PW3	PW4	RDL	QC Batch	MDL
Calculated Parameters										
Anion Sum	me/L	1.31	N/A	9.46	N/A	1.08	1.88	N/A	4407049	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	40	1.0	24	1.0	33	51	1.0	4407046	0.20
Calculated TDS	mg/L	81	1.0	540	1.0	88	120	1.0	4407053	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	<1.0	1.0	<1.0	<1.0	1.0	4407046	0.20
Cation Sum	me/L	1.19	N/A	9.42	N/A	1.34	1.90	N/A	4407049	N/A
Hardness (CaCO3)	mg/L	40	1.0	260	1.0	30	53	1.0	4407047	1.0
Ion Balance (% Difference)	%	4.80	N/A	0.210	N/A	10.7	0.530	N/A	4407048	N/A
Langelier Index (@ 20C)	N/A	-1.43		-1.64		-1.74	-0.915		4407051	
Langelier Index (@ 4C)	N/A	-1.68		-1.88		-1.99	-1.17		4407052	
Nitrate (N)	mg/L	0.36	0.050	0.86	0.050	0.61	<0.050	0.050	4407050	N/A
Saturation pH (@ 20C)	N/A	8.60		8.21		8.87	8.42		4407051	
Saturation pH (@ 4C)	N/A	8.85		8.45		9.12	8.67		4407052	
Inorganics	•				•				•	
Total Alkalinity (Total as CaCO3)	mg/L	40	5.0	24	5.0	33	51	5.0	4408316	N/A
Dissolved Chloride (CI)	mg/L	14	1.0	310	5.0	8.7	28	1.0	4408337	N/A
Colour	TCU	<5.0	5.0	<5.0	5.0	<5.0	24	5.0	4408356	N/A
Nitrate + Nitrite (N)	mg/L	0.36	0.050	0.86	0.050	0.61	<0.050	0.050	4408362	N/A
Nitrite (N)	mg/L	<0.010	0.010	<0.010	0.010	<0.010	<0.010	0.010	4408366	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	4409752	N/A
Total Organic Carbon (C)	mg/L	<0.50	0.50	1.4	0.50	0.99	0.61	0.50	4409460	N/A
Orthophosphate (P)	mg/L	0.092	0.010	0.012	0.010	0.20	0.042	0.010	4408360	N/A
рН	рН	7.18	N/A	6.57	N/A	7.13	7.51	N/A	4408767	N/A
Reactive Silica (SiO2)	mg/L	13	0.50	11	0.50	19	14	0.50	4408346	N/A
Dissolved Sulphate (SO4)	mg/L	4.7	2.0	12	2.0	5.4	3.6	2.0	4408341	N/A
Turbidity	NTU	2.4	0.10	160	1.0	47	29	0.10	4409161	0.10
Conductivity	uS/cm	120	1.0	1100	1.0	100	190	1.0	4408764	N/A
Metals	•	•	-	•	•	•	•	-	•	
Total Aluminum (Al)	ug/L	7.7	5.0	720	5.0	230	25	5.0	4410442	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	<1.0	1.0	4410442	N/A
Total Arsenic (As)	ug/L	5.0	1.0	1.1	1.0	91	8.5	1.0	4410442	N/A
Total Barium (Ba)	ug/L	35	1.0	310	1.0	83	13	1.0	4410442	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	<1.0	1.0	4410442	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	<2.0	2.0	4410442	N/A
Total Boron (B)	ug/L	<50	50	<50	50	<50	<50	50	4410442	N/A
Total Cadmium (Cd)	ug/L	<0.010	0.010	0.78	0.010	0.47	<0.010	0.010	4410442	N/A
RDL = Reportable Detection Limit			_		-					

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp. Client Project #: 20814

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		BYY308		BYY309		BYY310	BYY311			
Sampling Date		2016/03/04		2016/03/04		2016/03/04	2016/03/04			
COC Number		550949-01-01		550949-01-01		550949-01-01	550949-01-01			
	UNITS	PW1	RDL	PW2	RDL	PW3	PW4	RDL	QC Batch	MDL
Total Calcium (Ca)	ug/L	13000	100	79000	100	8800	17000	100	4410442	N/A
Total Chromium (Cr)	ug/L	<1.0	1.0	2.1	1.0	1.1	<1.0	1.0	4410442	N/A
Total Cobalt (Co)	ug/L	<0.40	0.40	0.56	0.40	2.7	<0.40	0.40	4410442	N/A
Total Copper (Cu)	ug/L	73	2.0	33	2.0	11	5.5	2.0	4410442	N/A
Total Iron (Fe)	ug/L	250	50	15000	50	9600	4000	50	4410442	N/A
Total Lead (Pb)	ug/L	0.58	0.50	7.8	0.50	5.5	1.1	0.50	4410442	N/A
Total Magnesium (Mg)	ug/L	1700	100	15000	100	2100	2700	100	4410442	N/A
Total Manganese (Mn)	ug/L	15	2.0	570	2.0	1400	96	2.0	4410442	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	<2.0	2.0	4410442	N/A
Total Nickel (Ni)	ug/L	<2.0	2.0	4.1	2.0	5.2	<2.0	2.0	4410442	N/A
Total Phosphorus (P)	ug/L	140	100	120	100	2100	350	100	4410442	N/A
Total Potassium (K)	ug/L	940	100	3400	100	950	1200	100	4410442	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	<1.0	1.0	4410442	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	<0.10	0.10	<0.10	<0.10	0.10	4410442	N/A
Total Sodium (Na)	ug/L	8100	100	83000	100	8300	15000	100	4410442	N/A
Total Strontium (Sr)	ug/L	66	2.0	470	2.0	39	62	2.0	4410442	N/A
Total Thallium (Tl)	ug/L	<0.10	0.10	<0.10	0.10	0.23	<0.10	0.10	4410442	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	<2.0	2.0	4410442	N/A
Total Titanium (Ti)	ug/L	<2.0	2.0	44	2.0	12	<2.0	2.0	4410442	N/A
Total Uranium (U)	ug/L	4.8	0.10	8.5	0.10	34	3.7	0.10	4410442	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	<2.0	2.0	4410442	N/A
Total Zinc (Zn)	ug/L	14	5.0	43	5.0	66	19	5.0	4410442	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp. Client Project #: 20814

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		BYY312			
Sampling Date		2016/03/04			
COC Number		550949-01-01			
	UNITS	PW5	RDL	QC Batch	MDL
Calculated Parameters			I		
Anion Sum	me/L	2.09	N/A	4407049	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	38	1.0	4407046	0.20
Calculated TDS	mg/L	140	1.0	4407053	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	4407046	0.20
Cation Sum	me/L	1.91	N/A	4407049	N/A
Hardness (CaCO3)	mg/L	<1.0	1.0	4407047	1.0
Ion Balance (% Difference)	%	4.50	N/A	4407048	N/A
Langelier Index (@ 20C)	N/A	NC		4407051	
Langelier Index (@ 4C)	N/A	NC		4407052	
Nitrate (N)	mg/L	0.14	0.050	4407050	N/A
Saturation pH (@ 20C)	N/A	NC		4407051	
Saturation pH (@ 4C)	N/A	NC		4407052	
Inorganics					
Total Alkalinity (Total as CaCO3)	mg/L	38	5.0	4408316	N/A
Dissolved Chloride (Cl)	mg/L	39	1.0	4408337	N/A
Colour	TCU	<5.0	5.0	4408356	N/A
Nitrate + Nitrite (N)	mg/L	0.14	0.050	4408362	N/A
Nitrite (N)	mg/L	<0.010	0.010	4408366	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	4409752	N/A
Total Organic Carbon (C)	mg/L	<0.50	0.50	4409460	N/A
Orthophosphate (P)	mg/L	0.37	0.010	4408360	N/A
рН	рН	7.23	N/A	4408767	N/A
Reactive Silica (SiO2)	mg/L	22	0.50	4408346	N/A
Dissolved Sulphate (SO4)	mg/L	9.7	2.0	4408341	N/A
Turbidity	NTU	1.2	0.10	4409161	0.10
Conductivity	uS/cm	220	1.0	4408764	N/A
Metals	•				
Total Aluminum (Al)	ug/L	6.5	5.0	4410442	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	4410442	N/A
Total Arsenic (As)	ug/L	9.8	1.0	4410442	N/A
Total Barium (Ba)	ug/L	<1.0	1.0	4410442	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	4410442	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	4410442	N/A
Total Boron (B)	ug/L	<50	50	4410442	N/A
Total Cadmium (Cd)	ug/L	<0.010	0.010	4410442	N/A
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					
N/A = Not Applicable					
N/A - NOLAPPIICADIE					

Englobe Corp. Client Project #: 20814

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		BYY312			
Sampling Date		2016/03/04			
COC Number		550949-01-01			
	UNITS	PW5	RDL	QC Batch	MDL
Total Calcium (Ca)	ug/L	<100	100	4410442	N/A
Total Chromium (Cr)	ug/L	<1.0	1.0	4410442	N/A
Total Cobalt (Co)	ug/L	<0.40	0.40	4410442	N/A
Total Copper (Cu)	ug/L	2.3	2.0	4410442	N/A
Total Iron (Fe)	ug/L	100	50	4410442	N/A
Total Lead (Pb)	ug/L	<0.50	0.50	4410442	N/A
Total Magnesium (Mg)	ug/L	<100	100	4410442	N/A
Total Manganese (Mn)	ug/L	<2.0	2.0	4410442	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	4410442	N/A
Total Nickel (Ni)	ug/L	<2.0	2.0	4410442	N/A
Total Phosphorus (P)	ug/L	380	100	4410442	N/A
Total Potassium (K)	ug/L	680	100	4410442	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	4410442	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	4410442	N/A
Total Sodium (Na)	ug/L	43000	100	4410442	N/A
Total Strontium (Sr)	ug/L	<2.0	2.0	4410442	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	4410442	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	4410442	N/A
Total Titanium (Ti)	ug/L	<2.0	2.0	4410442	N/A
Total Uranium (U)	ug/L	1.1	0.10	4410442	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	4410442	N/A
Total Zinc (Zn)	ug/L	14	5.0	4410442	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Englobe Corp. Client Project #: 20814

TEST SUMMARY

Maxxam ID: BYY308 Sample ID: PW1 Matrix: Water

Collected: Shipped: 2016/03/04

Received: 2016/03/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4407046	N/A	2016/03/09	Automated Statchk
Alkalinity	KONE	4408316	N/A	2016/03/08	Nancy Rogers
Chloride	KONE	4408337	N/A	2016/03/08	Nancy Rogers
Colour	KONE	4408356	N/A	2016/03/08	Nancy Rogers
Conductance - water	AT	4408764	N/A	2016/03/08	Tiffany Morash
Hardness (calculated as CaCO3)		4407047	N/A	2016/03/10	Automated Statchk
Metals Water Total MS	CICP/MS	4410442	2016/03/09	2016/03/09	Mike Leblanc
Ion Balance (% Difference)	CALC	4407048	N/A	2016/03/10	Automated Statchk
Anion and Cation Sum	CALC	4407049	N/A	2016/03/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4409752	N/A	2016/03/09	Soraya Merchant
Nitrogen - Nitrate + Nitrite	KONE	4408362	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4408366	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4407050	N/A	2016/03/10	Automated Statchk
рН	AT	4408767	N/A	2016/03/08	Tiffany Morash
Phosphorus - ortho	KONE	4408360	N/A	2016/03/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4407051	N/A	2016/03/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4407052	N/A	2016/03/10	Automated Statchk
Reactive Silica	KONE	4408346	N/A	2016/03/08	Nancy Rogers
Sulphate	KONE	4408341	N/A	2016/03/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4407053	N/A	2016/03/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4409460	N/A	2016/03/08	Soraya Merchant
Turbidity	TURB	4409161	N/A	2016/03/08	Tiffany Morash

Maxxam ID: BYY309 Sample ID: PW2 Matrix: Water

Collected: 2016/03/04

Shipped:

Received: 2016/03/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4407046	N/A	2016/03/09	Automated Statchk
Alkalinity	KONE	4408316	N/A	2016/03/08	Nancy Rogers
Chloride	KONE	4408337	N/A	2016/03/08	Nancy Rogers
Colour	KONE	4408356	N/A	2016/03/08	Nancy Rogers
Conductance - water	AT	4408764	N/A	2016/03/08	Tiffany Morash
Hardness (calculated as CaCO3)		4407047	N/A	2016/03/10	Automated Statchk
Metals Water Total MS	CICP/MS	4410442	2016/03/09	2016/03/09	Mike Leblanc
Ion Balance (% Difference)	CALC	4407048	N/A	2016/03/10	Automated Statchk
Anion and Cation Sum	CALC	4407049	N/A	2016/03/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4409752	N/A	2016/03/09	Soraya Merchant
Nitrogen - Nitrate + Nitrite	KONE	4408362	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4408366	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4407050	N/A	2016/03/10	Automated Statchk
рН	AT	4408767	N/A	2016/03/08	Tiffany Morash
Phosphorus - ortho	KONE	4408360	N/A	2016/03/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4407051	N/A	2016/03/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4407052	N/A	2016/03/10	Automated Statchk
Reactive Silica	KONE	4408346	N/A	2016/03/08	Nancy Rogers

Englobe Corp. Client Project #: 20814

TEST SUMMARY

Maxxam ID: BYY309 Sample ID: PW2 Collected: 20 Shipped:

2016/03/04

Matrix: Water

Received: 2016/03/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sulphate	KONE	4408341	N/A	2016/03/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4407053	N/A	2016/03/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4409460	N/A	2016/03/08	Soraya Merchant
Turbidity	TURB	4409161	N/A	2016/03/08	Tiffany Morash

Maxxam ID: BYY310 Sample ID: PW3 Matrix: Water **Collected:** 2016/03/04

Shipped:

Received: 2016/03/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4407046	N/A	2016/03/09	Automated Statchk
Alkalinity	KONE	4408316	N/A	2016/03/08	Nancy Rogers
Chloride	KONE	4408337	N/A	2016/03/08	Nancy Rogers
Colour	KONE	4408356	N/A	2016/03/08	Nancy Rogers
Conductance - water	AT	4408764	N/A	2016/03/08	Tiffany Morash
Hardness (calculated as CaCO3)		4407047	N/A	2016/03/10	Automated Statchk
Metals Water Total MS	CICP/MS	4410442	2016/03/09	2016/03/09	Mike Leblanc
Ion Balance (% Difference)	CALC	4407048	N/A	2016/03/10	Automated Statchk
Anion and Cation Sum	CALC	4407049	N/A	2016/03/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4409752	N/A	2016/03/09	Soraya Merchant
Nitrogen - Nitrate + Nitrite	KONE	4408362	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4408366	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4407050	N/A	2016/03/10	Automated Statchk
рН	AT	4408767	N/A	2016/03/08	Tiffany Morash
Phosphorus - ortho	KONE	4408360	N/A	2016/03/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4407051	N/A	2016/03/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4407052	N/A	2016/03/10	Automated Statchk
Reactive Silica	KONE	4408346	N/A	2016/03/08	Nancy Rogers
Sulphate	KONE	4408341	N/A	2016/03/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4407053	N/A	2016/03/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4409460	N/A	2016/03/08	Soraya Merchant
Turbidity	TURB	4409161	N/A	2016/03/08	Tiffany Morash

Maxxam ID: BYY311 Sample ID: PW4

Water

Matrix:

Collected: 2016/03/04

Shipped:

Received: 2016/03/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4407046	N/A	2016/03/09	Automated Statchk
Alkalinity	KONE	4408316	N/A	2016/03/08	Nancy Rogers
Chloride	KONE	4408337	N/A	2016/03/08	Nancy Rogers
Colour	KONE	4408356	N/A	2016/03/08	Nancy Rogers
Conductance - water	AT	4408764	N/A	2016/03/08	Tiffany Morash
Hardness (calculated as CaCO3)		4407047	N/A	2016/03/10	Automated Statchk
Metals Water Total MS	CICP/MS	4410442	2016/03/09	2016/03/09	Mike Leblanc
Ion Balance (% Difference)	CALC	4407048	N/A	2016/03/10	Automated Statchk

Englobe Corp. Client Project #: 20814

TEST SUMMARY

Maxxam ID: BYY311 Sample ID: PW4 Matrix: Water

Collected: 2016/03/04 **Shipped:**

Received: 2016/03/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anion and Cation Sum	CALC	4407049	N/A	2016/03/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4409752	N/A	2016/03/09	Soraya Merchant
Nitrogen - Nitrate + Nitrite	KONE	4408362	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4408366	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4407050	N/A	2016/03/10	Automated Statchk
pH	AT	4408767	N/A	2016/03/08	Tiffany Morash
Phosphorus - ortho	KONE	4408360	N/A	2016/03/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4407051	N/A	2016/03/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4407052	N/A	2016/03/10	Automated Statchk
Reactive Silica	KONE	4408346	N/A	2016/03/08	Nancy Rogers
Sulphate	KONE	4408341	N/A	2016/03/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4407053	N/A	2016/03/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4409460	N/A	2016/03/08	Soraya Merchant
Turbidity	TURB	4409161	N/A	2016/03/08	Tiffany Morash

Maxxam ID: BYY312 **Collected:** 2016/03/04 Sample ID: PW5

Shipped:

Matrix: Water Received: 2016/03/04

Instrumentation	Batch	Extracted	Date Analyzed	Analyst
CALC	4407046	N/A	2016/03/09	Automated Statchk
KONE	4408316	N/A	2016/03/08	Nancy Rogers
KONE	4408337	N/A	2016/03/08	Nancy Rogers
KONE	4408356	N/A	2016/03/08	Nancy Rogers
AT	4408764	N/A	2016/03/08	Tiffany Morash
	4407047	N/A	2016/03/10	Automated Statchk
CICP/MS	4410442	2016/03/09	2016/03/09	Mike Leblanc
CALC	4407048	N/A	2016/03/10	Automated Statchk
CALC	4407049	N/A	2016/03/10	Automated Statchk
KONE	4409752	N/A	2016/03/09	Soraya Merchant
KONE	4408362	N/A	2016/03/09	Nancy Rogers
KONE	4408366	N/A	2016/03/09	Nancy Rogers
CALC	4407050	N/A	2016/03/10	Automated Statchk
AT	4408767	N/A	2016/03/08	Tiffany Morash
KONE	4408360	N/A	2016/03/08	Nancy Rogers
CALC	4407051	N/A	2016/03/10	Automated Statchk
CALC	4407052	N/A	2016/03/10	Automated Statchk
KONE	4408346	N/A	2016/03/08	Nancy Rogers
KONE	4408341	N/A	2016/03/08	Nancy Rogers
CALC	4407053	N/A	2016/03/10	Automated Statchk
TECH	4409460	N/A	2016/03/08	Soraya Merchant
TURB	4409161	N/A	2016/03/08	Tiffany Morash
	CALC KONE KONE KONE AT CICP/MS CALC CALC KONE KONE KONE CALC CALC AT KONE CALC AT KONE CALC CALC AT KONE CALC CALC TECH	CALC 4407046 KONE 4408316 KONE 4408337 KONE 4408356 AT 4408764	CALC 4407046 N/A KONE 4408316 N/A KONE 4408337 N/A KONE 4408356 N/A AT 4408764 N/A CICP/MS 4410442 2016/03/09 CALC 4407048 N/A KONE 4409752 N/A KONE 4408366 N/A CALC 4407050 N/A KONE 4408360 N/A CALC 4407051 N/A KONE 4408360 N/A CALC 4407051 N/A KONE 4408346 N/A CALC 4407052 N/A KONE 4408346 N/A CALC 4407053 N/A KONE 4408341 N/A CALC 4407053 N/A CALC 4407053 N/A CALC 4407053 N/A	CALC 4407046 N/A 2016/03/09 KONE 4408316 N/A 2016/03/08 KONE 4408337 N/A 2016/03/08 KONE 4408356 N/A 2016/03/08 AT 4408764 N/A 2016/03/08 CICP/MS 4410442 2016/03/09 2016/03/09 CALC 4407048 N/A 2016/03/10 CALC 4407049 N/A 2016/03/10 KONE 4408362 N/A 2016/03/09 KONE 4408366 N/A 2016/03/09 CALC 4407050 N/A 2016/03/10 AT 4408767 N/A 2016/03/10 KONE 4408360 N/A 2016/03/08 KONE 4408360 N/A 2016/03/10 CALC 4407051 N/A 2016/03/10 KONE 4408341 N/A 2016/03/08 KONE 4408341 N/A 2016/03/08 CALC 4407053 N/A 2016/03/08 CALC 4407053 N/A 2016/03/08 CALC 4407053 N/A 2016/03/10 TECH 4409460 N/A 2016/03/08

Englobe Corp. Client Project #: 20814

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

D 4	E 000
Package 1	5.0°C

Sample BYY310-01: Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Results relate only to the items tested.

Englobe Corp. Client Project #: 20814

QUALITY ASSURANCE REPORT

01/06				D-t-		0/		
QA/QC	ln:+	OC Tuno	Daramatar	Date	Value	% Daggyany	LINITC	OC Limits
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4408316 4408316	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2016/03/08		NC 102	% %	80 - 120 80 - 120
	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/03/08	45.0	102		80 - 120
4408316	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2016/03/08	<5.0		mg/L	25
4408316	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2016/03/08	1.2	NC	%	25
4408337	NRG	Matrix Spike	Dissolved Chloride (CI)	2016/03/08		NC	%	80 - 120
4408337	NRG	QC Standard	Dissolved Chloride (CI)	2016/03/08		102	%	80 - 120
4408337	NRG	Spiked Blank	Dissolved Chloride (Cl)	2016/03/08		106	%	80 - 120
4408337	NRG	Method Blank	Dissolved Chloride (CI)	2016/03/08	<1.0		mg/L	
4408337	NRG	RPD - Sample/Sample Dup		2016/03/08	7.7		%	25
4408341	NRG	Matrix Spike	Dissolved Sulphate (SO4)	2016/03/08		NC	%	80 - 120
4408341	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2016/03/08		113	%	80 - 120
4408341	NRG	Method Blank	Dissolved Sulphate (SO4)	2016/03/08	<2.0		mg/L	
4408341	NRG	RPD - Sample/Sample Dup		2016/03/08	2.5		%	25
4408346	NRG	Matrix Spike	Reactive Silica (SiO2)	2016/03/08		96	%	80 - 120
4408346	NRG	Spiked Blank	Reactive Silica (SiO2)	2016/03/08		102	%	80 - 120
4408346	NRG	Method Blank	Reactive Silica (SiO2)	2016/03/08	<0.50		mg/L	
4408346	NRG	RPD - Sample/Sample Dup	· ·	2016/03/08	14		%	25
4408356	NRG	Spiked Blank	Colour	2016/03/08		113	%	80 - 120
4408356	NRG	Method Blank	Colour	2016/03/08	<5.0		TCU	
4408356	NRG	RPD - Sample/Sample Dup		2016/03/08	NC		%	20
4408360	NRG	Matrix Spike	Orthophosphate (P)	2016/03/08		89	%	80 - 120
4408360	NRG	Spiked Blank	Orthophosphate (P)	2016/03/08		97	%	80 - 120
4408360	NRG	Method Blank	Orthophosphate (P)	2016/03/08	<0.010		mg/L	
4408360	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2016/03/08	NC		%	25
4408362	NRG	Matrix Spike	Nitrate + Nitrite (N)	2016/03/09		103	%	80 - 120
4408362	NRG	Spiked Blank	Nitrate + Nitrite (N)	2016/03/09		103	%	80 - 120
4408362	NRG	Method Blank	Nitrate + Nitrite (N)	2016/03/09	< 0.050		mg/L	
4408362	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2016/03/09	0.81		%	25
4408366	NRG	Matrix Spike	Nitrite (N)	2016/03/09		NC	%	80 - 120
4408366	NRG	Spiked Blank	Nitrite (N)	2016/03/09		90	%	80 - 120
4408366	NRG	Method Blank	Nitrite (N)	2016/03/09	< 0.010		mg/L	
4408366	NRG	RPD - Sample/Sample Dup	Nitrite (N)	2016/03/09	0.39		%	25
4408764	TMO	Spiked Blank	Conductivity	2016/03/08		103	%	80 - 120
4408764	TMO	Method Blank	Conductivity	2016/03/08	2.1,		uS/cm	
					RDL=1.0			
4408764	TMO	RPD - Sample/Sample Dup	Conductivity	2016/03/08	0.59		%	25
4408767	TMO	QC Standard	pH	2016/03/08		100	%	97 - 103
4408767		RPD - Sample/Sample Dup	pH	2016/03/08	0.48		%	N/A
		QC Standard	Turbidity	2016/03/08		98	%	80 - 120
4409161	тмо	Method Blank	Turbidity	2016/03/08	<0.10		NTU	
4409161			•	2016/03/08	NC		%	20
4409460	SMT	Matrix Spike	Total Organic Carbon (C)	2016/03/08	-	NC	%	80 - 120
4409460		Spiked Blank	Total Organic Carbon (C)	2016/03/08		96	%	80 - 120
4409460		Method Blank	Total Organic Carbon (C)	2016/03/08	<0.50		mg/L	
4409460	SMT			2016/03/08	NC		%	20
4409752	SMT	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/03/09		90	%	80 - 120
4409752	SMT	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/03/09		95	%	80 - 120
4409752		Method Blank	Nitrogen (Ammonia Nitrogen)	2016/03/09	<0.050		mg/L	
4409752		RPD - Sample/Sample Dup		2016/03/09	NC		%	20
4410442	MLB	Matrix Spike	Total Aluminum (AI)	2016/03/09		NC	%	80 - 120
			Total Antimony (Sb)	2016/03/09		100	%	80 - 120
			Total Arsenic (As)	2016/03/09		97	%	80 - 120
			Total Barium (Ba)	2016/03/09		95	%	80 - 120
			Total Beryllium (Be)	2016/03/09		96	%	80 - 120
<u> </u>			Total berymani (be)	2010/03/03			/0	00 120

Englobe Corp. Client Project #: 20814

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
		• •	Total Bismuth (Bi)	2016/03/09		99	%	80 - 120
			Total Boron (B)	2016/03/09		99	%	80 - 120
			Total Cadmium (Cd)	2016/03/09		98	%	80 - 120
			Total Calcium (Ca)	2016/03/09		99	%	80 - 120
			Total Chromium (Cr)	2016/03/09		97	%	80 - 120
			Total Cobalt (Co)	2016/03/09		98	%	80 - 120
			Total Copper (Cu)	2016/03/09		95	%	80 - 120
			Total Iron (Fe)	2016/03/09		101	%	80 - 120
			Total Lead (Pb)	2016/03/09		95	%	80 - 120
			Total Magnesium (Mg)	2016/03/09		NC	%	80 - 120
			Total Manganese (Mn)	2016/03/09		99	%	80 - 120
			Total Molybdenum (Mo)	2016/03/09		100	%	80 - 120
			Total Nickel (Ni)	2016/03/09		99	%	80 - 120
			Total Phosphorus (P)	2016/03/09		103	%	80 - 120
			Total Potassium (K)	2016/03/09		100	%	80 - 120
			Total Selenium (Se)	2016/03/09		99	%	80 - 120
			Total Silver (Ag)	2016/03/09		97	%	80 - 120
			Total Sodium (Na)	2016/03/09		NC	%	80 - 120
			Total Strontium (Sr)	2016/03/09		NC	%	80 - 120
			Total Thallium (TI)	2016/03/09		97	%	80 - 120
			Total Tin (Sn)	2016/03/09		101	%	80 - 120
			Total Titanium (Ti)	2016/03/09		101	%	80 - 120
			Total Uranium (U)	2016/03/09		105	%	80 - 120
			Total Vanadium (V)	2016/03/09		98	%	80 - 120
			Total Zinc (Zn)	2016/03/09		97	%	80 - 120
4410442	MLB	Spiked Blank	Total Aluminum (AI)	2016/03/09		99	%	80 - 120
			Total Antimony (Sb)	2016/03/09		95	%	80 - 120
			Total Arsenic (As)	2016/03/09		93	%	80 - 120
			Total Barium (Ba)	2016/03/09		92	%	80 - 120
			Total Beryllium (Be)	2016/03/09		92	%	80 - 120
			Total Bismuth (Bi)	2016/03/09		99	%	80 - 120
			Total Boron (B)	2016/03/09		94	%	80 - 120
			Total Cadmium (Cd)	2016/03/09		94	%	80 - 120
			Total Calcium (Ca)	2016/03/09		96	%	80 - 120
			Total Chromium (Cr)	2016/03/09		94	%	80 - 120
			Total Cobalt (Co)	2016/03/09		95	%	80 - 120
			Total Copper (Cu)	2016/03/09		94	%	80 - 120
			Total Iron (Fe)	2016/03/09		99	%	80 - 120
			Total Lead (Pb)	2016/03/09		95	%	80 - 120
			Total Magnesium (Mg)	2016/03/09		99	%	80 - 120
			Total Manganese (Mn)	2016/03/09		96	%	80 - 120
			Total Molybdenum (Mo)	2016/03/09		96	%	80 - 120
			Total Nickel (Ni)	2016/03/09		95	%	80 - 120
			Total Phosphorus (P)	2016/03/09		99	%	80 - 120
			Total Solonium (K)	2016/03/09		98 05	%	80 - 120
			Total Silver (Ag)	2016/03/09		95 05	%	80 - 120
			Total Solium (Na)	2016/03/09		95 99	% %	80 - 120 80 - 120
			Total Strontium (Sr)	2016/03/09		99 05	% %	80 - 120 80 - 120
			Total Strontium (Sr)	2016/03/09		95 06	%	80 - 120
			Total Thallium (TI)	2016/03/09		96 96	% %	80 - 120 80 - 120
			Total Titanium (Ti)	2016/03/09		96 06	%	80 - 120
			Total Usanium (TI)	2016/03/09		96 102	%	80 - 120
			Total Vanadium (V)	2016/03/09		102	%	80 - 120
			Total Vanadium (V)	2016/03/09		95	%	80 - 120

Englobe Corp. Client Project #: 20814

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC	-			Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Zinc (Zn)	2016/03/09		95	%	80 - 120
4410442	MLB	Method Blank	Total Aluminum (Al)	2016/03/09	5.0,		ug/L	
					RDL=5.0			
			Total Antimony (Sb)	2016/03/09	<1.0		ug/L	
			Total Arsenic (As)	2016/03/09	<1.0		ug/L	
			Total Barium (Ba)	2016/03/09	<1.0		ug/L	
			Total Beryllium (Be)	2016/03/09	<1.0		ug/L	
			Total Bismuth (Bi)	2016/03/09	<2.0		ug/L	
			Total Boron (B)	2016/03/09	<50		ug/L	
			Total Cadmium (Cd)	2016/03/09	< 0.010		ug/L	
			Total Calcium (Ca)	2016/03/09	<100		ug/L	
			Total Chromium (Cr)	2016/03/09	<1.0		ug/L	
			Total Cobalt (Co)	2016/03/09	< 0.40		ug/L	
			Total Copper (Cu)	2016/03/09	<2.0		ug/L	
			Total Iron (Fe)	2016/03/09	<50		ug/L	
			Total Lead (Pb)	2016/03/09	< 0.50		ug/L	
			Total Magnesium (Mg)	2016/03/09	<100		ug/L	
			Total Manganese (Mn)	2016/03/09	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/03/09	<2.0		ug/L	
			Total Nickel (Ni)	2016/03/09	<2.0		ug/L	
			Total Phosphorus (P)	2016/03/09	<100		ug/L	
			Total Potassium (K)	2016/03/09	<100		ug/L	
			Total Selenium (Se)	2016/03/09	<1.0		ug/L	
			Total Silver (Ag)	2016/03/09	< 0.10		ug/L	
			Total Sodium (Na)	2016/03/09	<100		ug/L	
			Total Strontium (Sr)	2016/03/09	<2.0		ug/L	
			Total Thallium (Tl)	2016/03/09	< 0.10		ug/L	
			Total Tin (Sn)	2016/03/09	<2.0		ug/L	
			Total Titanium (Ti)	2016/03/09	<2.0		ug/L	
			Total Uranium (U)	2016/03/09	< 0.10		ug/L	
			Total Vanadium (V)	2016/03/09	<2.0		ug/L	
			Total Zinc (Zn)	2016/03/09	<5.0		ug/L	
4410442	MLB	RPD - Sample/Sample Dup	Total Iron (Fe)	2016/03/09	NC		%	20
			Total Nickel (Ni)	2016/03/09	NC		%	20
			Total Vanadium (V)	2016/03/09	NC		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Englobe Corp. Client Project #: 20814

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Original Signed

Mike MacGillivray, Scientific Specialist (Inorganics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

1ax	Lam gritas Droup Correpant	Maxxam Analytics Internation 200 Bluewater Road, Bedfor				II-Free:(800)	565-7227	Fax:(902)	420-8612 v	ww.maxxa	m.ca							Chair	Of Custody Record	Page 1 of 1
		INVOICE TO:				Report Inf	ormation		700 S S S S S S S S S S S S S S S S S S		\neg			Project In	formation	Ę		2	Laboratory Use	
npany Name	#41009 Englo	be Corp.		Company N	ame			"He of 1981	Ministra		Quo	tation#		342284			Num		Maxxam Job #	Bottle Order #:
ntact Name	Accounts Paya	ible		Contact Nan	Lisa Ladou	ceur 1	A	ren (ole	PER	P.O.			200		W		2	115600	
ress	97 Troop Ave			Address				NULL AND ASSESSMENT		1-11-40	Proje	ect#	3	20814				10		550949
	Dartmouth NS (902) 468-6486		469 4010	-	_ 						Proje	ect Name						-	Chain Of Custody Record	Project Manager
ne iil	A Company of the Comp	@englobecorp.com	400-4313	Phone Email	lisa.ladouce	eur@englo		Fax o.com			Site		-		No.				C#550949-01-01	Avery Withrow
egulatory Cr		S-13-1-1-1			ial Instructions	0-3		T		ANAL	_	pled By UESTED (PLEASE E	BE SPECIFI	C)	_			Turnaround Time (TAT) Re	equired:
** Specify Ma	atrix: Surface/Ground/ Potable/Nonpotable/T	Tapwater/Sewage/Effluent/Seawa Tssue/Soll/Sludge/Metal	ier				& Preserved	RCAp-MS Total Metals in Water	1	X	of de	(TR)	Ams MA	/	,		-	(will be app Standard T Please note days - cont	tandard) TAT: illed if Rush TAT is not specified): AT = 5-7 Working days for most tests. > Standard TAT for certain tests such as Bl act your Project Manager for details. Iffic Rush TAT (if applies to entire submiss ed: Time Re-	sion)
	SAMPLES MUST BE	KEPT COOL (< 10°C) FROM TIN		UNTIL DELIVER	Y TO MAXXAM	Matrix	Field Effered & Preserved	RCAp-MS 1	Z°C	S	The	E.66	Shall					# of Bottles	Comments / Hazards / Other	Required Analysis
		PW1	3	14/16		PW	¥	X						`				100 K	(×120	
		PW2					V	X												
		PW3					V	×												
		PW4				V	×	х										V	=	
		×			Johis,	(GW	w/	*							_	_	-	1		
		Dot			\/	Aw 1	Na Par	×										1		
		With 2 72	h		lomos	V	'n	X	X	×	×	Z	X			_		300	3240	
-		WONS F	5 h-		Kindo	Λ	R	X	X	->	2	-2	R			-		1		
		PUS		V		PW		X									17	1×100	1×120	
		100																		2016 MAR 4 12
* * REL	INQUISHED BY: (Sig	nature/Print)	Date: (YY/MN	M/DD) Tim	e	RECEIV	ED BY: (Signature/F	rint)		Dat	e: (YY/MM	/DD)	Time		used and			Lab Use Only	
)ria	inal S	igned	16/3/	3	Origi	nal Si	gne	d							not su	ubmitted		ensitive	Temperature (°C) on Receipt C	ustody Seal Intact on C

Your Project #: 20814 Your C.O.C. #: B 159530

Attention:Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/03/15 Report #: R3930978

Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B643669 Received: 2016/03/03, 12:59

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	3	N/A	2016/03/07	N/A	SM 22 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	1	N/A	2016/03/08	N/A	SM 22 4500-CO2 D
Alkalinity	4	N/A	2016/03/08	ATL SOP 00013	EPA 310.2 R1974 m
Anions (1)	2	N/A	2016/03/07	CAM SOP-00435	SM 22 4110 B m
Chloride	4	N/A	2016/03/08	ATL SOP 00014	SM 22 4500-Cl- E m
TC/EC Non Drinking Water CFU/100mL	2	N/A	2016/03/04	ATL SOP 00096	OMOE E3407 V5.2
Colour	4	N/A	2016/03/08	ATL SOP 00020	SM 22 2120C m
Conductance - water	3	N/A	2016/03/07	ATL SOP 00004	SM 22 2510B m
Conductance - water	1	N/A	2016/03/11	ATL SOP 00004	SM 22 2510B m
Fluoride	2	N/A	2016/03/07	ATL SOP 00043	SM 22 4500-F- C m
Hardness (calculated as CaCO3)	4	N/A	2016/03/10	ATL SOP 00048	SM 22 2340 B
Metals Water Total MS	4	2016/03/09	2016/03/10	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	4	N/A	2016/03/10		Auto Calc.
Anion and Cation Sum	4	N/A	2016/03/10		Auto Calc.
Nitrogen Ammonia - water	4	N/A	2016/03/07	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	4	N/A	2016/03/09	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	4	N/A	2016/03/09	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	4	N/A	2016/03/10	ATL SOP 00018	ASTM D3867
pH (2)	3	N/A	2016/03/07	ATL SOP 00003	SM 22 4500-H+ B m
pH (2)	1	N/A	2016/03/08	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	4	N/A	2016/03/08	ATL SOP 00021	EPA 365.2 m
Sat. pH and Langelier Index (@ 20C)	4	N/A	2016/03/10	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	4	N/A	2016/03/10	ATL SOP 00049	Auto Calc.
Reactive Silica	3	N/A	2016/03/08	ATL SOP 00022	EPA 366.0 m
Reactive Silica	1	N/A	2016/03/09	ATL SOP 00022	EPA 366.0 m
Sulphate	4	N/A	2016/03/08	ATL SOP 00023	ASTMD516-11 m
Total Dissolved Solids (TDS calc)	4	N/A	2016/03/10		Auto Calc.
Organic carbon - Total (TOC) (3)	4	N/A	2016/03/15	ATL SOP 00037	SM 22 5310C m
Turbidity	4	N/A	2016/03/07	ATL SOP 00011	EPA 180.1 R2 m
Volatile Organic Compounds in Water	2	N/A	2016/03/07	ATL SOP 00133	EPA 8260C R3 m

Your Project #: 20814 Your C.O.C. #: B 159530

Attention: Aven Cole

Englobe Corp.
97 Troop Ave
Dartmouth, NS
CANADA B3B 2A7

Report Date: 2016/03/15

Report #: R3930978 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B643669 Received: 2016/03/03, 12:59

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Analytics Mississauga
- (2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (3) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Avery Withrow, Project Manager Email: AWithrow@maxxam.ca Phone# (902)420-0203 Ext:233

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Englobe Corp. Client Project #: 20814

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

	Т		1		1					
Maxxam ID		BYO985		BYO986			BYO987			
Sampling Date		2016/03/03 10:05		2016/03/03 10:00			2016/03/03 10:15			
COC Number		В 159530		В 159530			B 159530			
	UNITS	WELL 3 - 72 HR	RDL	WELL 4 - 72 HR	RDL	QC Batch	P1	RDL	QC Batch	MDL
Calculated Parameters										
Anion Sum	me/L	3.94	N/A	5.43	N/A	4403097	0.140	N/A	4403097	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	24	1.0	27	1.0	4403093	<1.0	1.0	4403093	0.20
Calculated TDS	mg/L	240	1.0	320	1.0	4403102	11	1.0	4403102	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	<1.0	1.0	4403093	<1.0	1.0	4403093	0.20
Cation Sum	me/L	3.59	N/A	5.24	N/A	4403097	0.330	N/A	4403097	N/A
Hardness (CaCO3)	mg/L	120	1.0	170	1.0	4403881	6.2	1.0	4403881	1.0
Ion Balance (% Difference)	%	4.65	N/A	1.78	N/A	4403096	40.4	N/A	4403096	N/A
Langelier Index (@ 20C)	N/A	-1.66		-1.35		4403100	NC		4403100	
Langelier Index (@ 4C)	N/A	-1.91		-1.60		4403101	NC		4403101	
Nitrate (N)	mg/L	<0.050	0.050	<0.050	0.050	4403098	<0.050	0.050	4403906	N/A
Saturation pH (@ 20C)	N/A	8.41		8.25		4403100	NC		4403100	
Saturation pH (@ 4C)	N/A	8.66		8.49		4403101	NC		4403101	
Inorganics								,		
Total Alkalinity (Total as CaCO3)	mg/L	24	5.0	27	5.0	4408316	<5.0	5.0	4408851	N/A
Dissolved Chloride (CI)	mg/L	120	1.0	170	1.0	4408337	4.9	1.0	4408858	N/A
Colour	TCU	<5.0	5.0	<5.0	5.0	4408356	220	25	4408866	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	<0.050	0.050	4408362	<0.050	0.050	4408870	N/A
Nitrite (N)	mg/L	<0.010	0.010	<0.010	0.010	4408366	<0.010	0.010	4408878	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.23	0.050	0.12	0.050	4407708	0.31	0.050	4407708	N/A
Total Organic Carbon (C)	mg/L	<0.50	0.50	<0.50	0.50	4417833	<50 (1)	50	4417833	N/A
Orthophosphate (P)	mg/L	0.38	0.010	0.27	0.010	4408360	0.012	0.010	4408884	N/A
рН	рН	6.75	N/A	6.90	N/A	4407314	4.11	N/A	4408976	N/A
Reactive Silica (SiO2)	mg/L	27	1.0	23	0.50	4408346	0.71	0.50	4409098	N/A
Dissolved Sulphate (SO4)	mg/L	6.7	2.0	7.5	2.0	4408341	<2.0	2.0	4408861	N/A
Turbidity	NTU	<0.10	0.10	0.73	0.10	4407724	>1000	1.0	4407724	0.10
Conductivity	uS/cm	420	1.0	610	1.0	4407317	51	1.0	4414244	N/A
Metals										
Total Aluminum (Al)	ug/L	6.0	5.0	6.2	5.0	4410445	840	5.0	4410445	N/A
Total Antimony (Sb)	ug/L	<1.0	1.0	<1.0	1.0	4410445	<1.0	1.0	4410445	N/A
Total Arsenic (As)	ug/L	5.7	1.0	3.5	1.0	4410445	<1.0	1.0	4410445	N/A
Total Barium (Ba)	ug/L	340	1.0	330	1.0	4410445	15	1.0	4410445	N/A
Total Beryllium (Be)	ug/L	<1.0	1.0	<1.0	1.0	4410445	<1.0	1.0	4410445	N/A
Total Bismuth (Bi)	ug/L	<2.0	2.0	<2.0	2.0	4410445	<2.0	2.0	4410445	N/A
					_			_		_

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

Englobe Corp. Client Project #: 20814

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		BYO985		BYO986			BYO987			
Sampling Date		2016/03/03		2016/03/03			2016/03/03			
		10:05		10:00			10:15			
COC Number		B 159530		B 159530			B 159530			
	UNITS	WELL 3 - 72 HR	RDL	WELL 4 - 72 HR	RDL	QC Batch	P1	RDL	QC Batch	MDL
Total Boron (B)	ug/L	<50	50	<50	50	4410445	<50	50	4410445	N/A
Total Cadmium (Cd)	ug/L	0.010	0.010	0.026	0.010	4410445	0.12	0.010	4410445	N/A
Total Calcium (Ca)	ug/L	40000	100	57000	100	4410445	1400	100	4410445	N/A
Total Chromium (Cr)	ug/L	<1.0	1.0	<1.0	1.0	4410445	1.5	1.0	4410445	N/A
Total Cobalt (Co)	ug/L	<0.40	0.40	<0.40	0.40	4410445	<0.40	0.40	4410445	N/A
Total Copper (Cu)	ug/L	<2.0	2.0	<2.0	2.0	4410445	17	2.0	4410445	N/A
Total Iron (Fe)	ug/L	<50	50	120	50	4410445	660	50	4410445	N/A
Total Lead (Pb)	ug/L	<0.50	0.50	<0.50	0.50	4410445	4.2	0.50	4410445	N/A
Total Magnesium (Mg)	ug/L	4500	100	6300	100	4410445	660	100	4410445	N/A
Total Manganese (Mn)	ug/L	110	2.0	260	2.0	4410445	13	2.0	4410445	N/A
Total Molybdenum (Mo)	ug/L	<2.0	2.0	<2.0	2.0	4410445	<2.0	2.0	4410445	N/A
Total Nickel (Ni)	ug/L	<2.0	2.0	<2.0	2.0	4410445	<2.0	2.0	4410445	N/A
Total Phosphorus (P)	ug/L	390	100	330	100	4410445	170	100	4410445	N/A
Total Potassium (K)	ug/L	2700	100	4000	100	4410445	180	100	4410445	N/A
Total Selenium (Se)	ug/L	<1.0	1.0	<1.0	1.0	4410445	<1.0	1.0	4410445	N/A
Total Silver (Ag)	ug/L	<0.10	0.10	<0.10	0.10	4410445	<0.10	0.10	4410445	N/A
Total Sodium (Na)	ug/L	26000	100	41000	100	4410445	1700	100	4410445	N/A
Total Strontium (Sr)	ug/L	460	2.0	740	2.0	4410445	11	2.0	4410445	N/A
Total Thallium (TI)	ug/L	<0.10	0.10	<0.10	0.10	4410445	<0.10	0.10	4410445	N/A
Total Tin (Sn)	ug/L	<2.0	2.0	<2.0	2.0	4410445	4.8	2.0	4410445	N/A
Total Titanium (Ti)	ug/L	<2.0	2.0	<2.0	2.0	4410445	17	2.0	4410445	N/A
Total Uranium (U)	ug/L	2.2	0.10	4.4	0.10	4410445	1.2	0.10	4410445	N/A
Total Vanadium (V)	ug/L	<2.0	2.0	<2.0	2.0	4410445	<2.0	2.0	4410445	N/A
Total Zinc (Zn)	ug/L	<5.0	5.0	<5.0	5.0	4410445	42	5.0	4410445	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp. Client Project #: 20814

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		BYO988	BYO988			
Sampling Date		2016/03/03 11:00	2016/03/03 11:00			
COC Number		B 159530	B 159530			
	UNITS	DW1	DW1 Lab-Dup	RDL	QC Batch	MDL
Calculated Parameters						
Anion Sum	me/L	0.690		N/A	4403097	N/A
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	8.5		1.0	4403905	0.20
Calculated TDS	mg/L	47		1.0	4403102	0.20
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0		1.0	4403905	0.20
Cation Sum	me/L	0.670		N/A	4403097	N/A
Hardness (CaCO3)	mg/L	13		1.0	4403881	1.0
Ion Balance (% Difference)	%	1.47		N/A	4403096	N/A
Langelier Index (@ 20C)	N/A	-3.59			4403100	
Langelier Index (@ 4C)	N/A	-3.85			4403101	
Nitrate (N)	mg/L	<0.050		0.050	4403906	N/A
Saturation pH (@ 20C)	N/A	9.81			4403100	
Saturation pH (@ 4C)	N/A	10.1			4403101	
Inorganics						ı
Total Alkalinity (Total as CaCO3)	mg/L	8.5	8.9	5.0	4408851	N/A
Dissolved Chloride (Cl)	mg/L	14	15	1.0	4408858	N/A
Colour	TCU	<5.0	<5.0	5.0	4408866	N/A
Nitrate + Nitrite (N)	mg/L	<0.050	<0.050	0.050	4408870	N/A
Nitrite (N)	mg/L	<0.010	<0.010	0.010	4408878	N/A
Nitrogen (Ammonia Nitrogen)	mg/L	0.18		0.050	4407708	N/A
Total Organic Carbon (C)	mg/L	0.79		0.50	4417833	N/A
Orthophosphate (P)	mg/L	0.010	0.010	0.010	4408884	N/A
рН	рН	6.22		N/A	4407314	N/A
Reactive Silica (SiO2)	mg/L	7.5	8.1	0.50	4409098	N/A
Dissolved Sulphate (SO4)	mg/L	5.5	5.5	2.0	4408861	N/A
Turbidity	NTU	0.45		0.10	4407729	0.10
Conductivity	uS/cm	76		1.0	4407317	N/A
Metals						
Total Aluminum (Al)	ug/L	110		5.0	4410445	N/A
Total Antimony (Sb)	ug/L	<1.0		1.0	4410445	N/A
Total Arsenic (As)	ug/L	<1.0		1.0	4410445	N/A
Total Barium (Ba)	ug/L	36		1.0	4410445	N/A
Total Beryllium (Be)	ug/L	<1.0		1.0	4410445	N/A
Total Bismuth (Bi)	ug/L	<2.0		2.0	4410445	N/A
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Du	•					

N/A = Not Applicable

Englobe Corp. Client Project #: 20814

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		BYO988	BYO988			
Sampling Date		2016/03/03 11:00	2016/03/03 11:00			
COC Number		B 159530	B 159530			
	UNITS	DW1	DW1 Lab-Dup	RDL	QC Batch	MDL
Total Boron (B)	ug/L	<50		50	4410445	N/A
Total Cadmium (Cd)	ug/L	0.031		0.010	4410445	N/A
Total Calcium (Ca)	ug/L	3700		100	4410445	N/A
Total Chromium (Cr)	ug/L	<1.0		1.0	4410445	N/A
Total Cobalt (Co)	ug/L	<0.40		0.40	4410445	N/A
Total Copper (Cu)	ug/L	3.5		2.0	4410445	N/A
Total Iron (Fe)	ug/L	<50		50	4410445	N/A
Total Lead (Pb)	ug/L	<0.50		0.50	4410445	N/A
Total Magnesium (Mg)	ug/L	950		100	4410445	N/A
Total Manganese (Mn)	ug/L	16		2.0	4410445	N/A
Total Molybdenum (Mo)	ug/L	<2.0		2.0	4410445	N/A
Total Nickel (Ni)	ug/L	<2.0		2.0	4410445	N/A
Total Phosphorus (P)	ug/L	<100		100	4410445	N/A
Total Potassium (K)	ug/L	1800		100	4410445	N/A
Total Selenium (Se)	ug/L	<1.0		1.0	4410445	N/A
Total Silver (Ag)	ug/L	<0.10		0.10	4410445	N/A
Total Sodium (Na)	ug/L	8100		100	4410445	N/A
Total Strontium (Sr)	ug/L	17		2.0	4410445	N/A
Total Thallium (TI)	ug/L	<0.10		0.10	4410445	N/A
Total Tin (Sn)	ug/L	<2.0		2.0	4410445	N/A
Total Titanium (Ti)	ug/L	<2.0		2.0	4410445	N/A
Total Uranium (U)	ug/L	0.16		0.10	4410445	N/A
Total Vanadium (V)	ug/L	<2.0		2.0	4410445	N/A
Total Zinc (Zn)	ug/L	<5.0		5.0	4410445	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Englobe Corp. Client Project #: 20814

ATLANTIC VOC IN WATER (WATER)

Maxxam ID		BYO985	BYO985	BYO986			
Sampling Date		2016/03/03	2016/03/03	2016/03/03			
Sampling Date		10:05	10:05	10:00			
COC Number		B 159530	B 159530	B 159530			
	UNITS	WELL 3 - 72 HR	WELL 3 - 72 HR Lab-Dup	WELL 4 - 72 HR	RDL	QC Batch	MDL
Chlorobenzenes							
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	4407282	N/A
1,3-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	1.0	4407282	N/A
1,4-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	1.0	4407282	N/A
Chlorobenzene	ug/L	<1.0	<1.0	<1.0	1.0	4407282	N/A
Volatile Organics			-	-		!	
1,1,1-Trichloroethane	ug/L	<1.0	<1.0	<1.0	1.0	4407282	N/A
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	0.50	4407282	N/A
1,1,2-Trichloroethane	ug/L	<1.0	<1.0	<1.0	1.0	4407282	N/A
1,1-Dichloroethane	ug/L	<2.0	<2.0	<2.0	2.0	4407282	N/A
1,1-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	0.50	4407282	1.0
1,2-Dichloroethane	ug/L	<1.0	<1.0	<1.0	1.0	4407282	N/A
1,2-Dichloropropane	ug/L	<0.50	<0.50	<0.50	0.50	4407282	N/A
Benzene	ug/L	<1.0	<1.0	<1.0	1.0	4407282	N/A
Bromodichloromethane	ug/L	<1.0	<1.0	<1.0	1.0	4407282	0.20
Bromoform	ug/L	<1.0	<1.0	<1.0	1.0	4407282	0.20
Bromomethane	ug/L	<0.50	<0.50	<0.50	0.50	4407282	N/A
Carbon Tetrachloride	ug/L	<0.50	<0.50	<0.50	0.50	4407282	N/A
Chloroethane	ug/L	<8.0	<8.0	<8.0	8.0	4407282	N/A
Chloroform	ug/L	<1.0	<1.0	<1.0	1.0	4407282	0.20
Chloromethane	ug/L	<8.0	<8.0	<8.0	8.0	4407282	N/A
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	0.50	4407282	N/A
cis-1,3-Dichloropropene	ug/L	<0.50	<0.50	<0.50	0.50	4407282	N/A
Dibromochloromethane	ug/L	<1.0	<1.0	<1.0	1.0	4407282	0.20
Ethylbenzene	ug/L	<1.0	<1.0	<1.0	1.0	4407282	N/A
Ethylene Dibromide	ug/L	<0.20	<0.20	<0.20	0.20	4407282	0.50
Methylene Chloride(Dichloromethane)	ug/L	<3.0	<3.0	<3.0	3.0	4407282	N/A
o-Xylene	ug/L	<1.0	<1.0	<1.0	1.0	4407282	N/A
p+m-Xylene	ug/L	<2.0	<2.0	<2.0	2.0	4407282	N/A
Styrene	ug/L	<1.0	<1.0	<1.0	1.0	4407282	N/A
Tetrachloroethylene	ug/L	<1.0	<1.0	<1.0	1.0	4407282	N/A
Toluene	ug/L	<1.0	<1.0	1.1	1.0	4407282	N/A
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	0.50	4407282	N/A
trans-1,3-Dichloropropene	ug/L	<0.50	<0.50	<0.50	0.50	4407282	N/A
			•	•	-		•

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Englobe Corp. Client Project #: 20814

ATLANTIC VOC IN WATER (WATER)

Maxxam ID		BYO985	BYO985	BYO986			
Sampling Date		2016/03/03 10:05	2016/03/03 10:05	2016/03/03 10:00			
COC Number		В 159530	В 159530	B 159530			
	UNITS	WELL 3 - 72 HR	WELL 3 - 72 HR Lab-Dup	WELL 4 - 72 HR	RDL	QC Batch	MDL
Trichloroethylene	ug/L	<1.0	<1.0	<1.0	1.0	4407282	N/A
Trichlorofluoromethane (FREON 11)	ug/L	<8.0	<8.0	<8.0	8.0	4407282	N/A
Vinyl Chloride	ug/L	<0.50	<0.50	<0.50	0.50	4407282	2.0
Surrogate Recovery (%)							
4-Bromofluorobenzene	%	100	99	99		4407282	
D4-1,2-Dichloroethane	%	95	98	96		4407282	
D8-Toluene	%	98	97	97		4407282	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Englobe Corp. Client Project #: 20814

RESULTS OF ANALYSES OF WATER

Maxxam ID		BYO985	BYO986			
Sampling Date		2016/03/03 10:05	2016/03/03 10:00			
COC Number		В 159530	B 159530			
	UNITS	WELL 3 - 72 HR	WELL 4 - 72 HR	RDL	QC Batch	MDL
Inorganics						
Dissolved Fluoride (F-)	mg/L	0.28	0.31	0.10	4407312	0.050
Dissolved Fluoride (F-) Bromide (Br-)	mg/L mg/L	0.28 <1.0	0.31 <1.0	1.0	4407312 4406780	0.050 N/A
	mg/L					
Bromide (Br-)	mg/L Limit					

Englobe Corp. Client Project #: 20814

MICROBIOLOGY (WATER)

Maxxam ID		BYO985	BYO986			
Sampling Date		2016/03/03 10:05	2016/03/03 10:00			
COC Number		B 159530	B 159530			
	UNITS	WELL 3 - 72 HR	WELL 4 - 72 HR	RDL	QC Batch	MDL
Microbiological						
Escherichia coli	CFU/100mL	<1.0	<1.0	1.0	4404941	N/A
Total Coliforms	CFU/100mL	<1.0	<1.0	1.0	4404941	N/A
	,					

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Englobe Corp. Client Project #: 20814

TEST SUMMARY

Maxxam ID: BYO985 Sample ID: WELL 3 - 72 HR Matrix: Water

Collected:

2016/03/03

Shipped:

Received: 2016/03/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4403093	N/A	2016/03/07	Automated Statchk
Alkalinity	KONE	4408316	N/A	2016/03/08	Nancy Rogers
Anions	IC	4406780	N/A	2016/03/07	Fari Dehdezi
Chloride	KONE	4408337	N/A	2016/03/08	Nancy Rogers
TC/EC Non Drinking Water CFU/100mL		4404941	N/A	2016/03/04	Jason Wang
Colour	KONE	4408356	N/A	2016/03/08	Nancy Rogers
Conductance - water	AT	4407317	N/A	2016/03/07	Tiffany Morash
Fluoride	AT	4407312	N/A	2016/03/07	Tiffany Morash
Hardness (calculated as CaCO3)		4403881	N/A	2016/03/10	Automated Statchk
Metals Water Total MS	CICP/MS	4410445	2016/03/09	2016/03/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4403096	N/A	2016/03/10	Automated Statchk
Anion and Cation Sum	CALC	4403097	N/A	2016/03/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4407708	N/A	2016/03/07	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4408362	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4408366	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4403098	N/A	2016/03/10	Automated Statchk
рН	AT	4407314	N/A	2016/03/07	Tiffany Morash
Phosphorus - ortho	KONE	4408360	N/A	2016/03/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4403100	N/A	2016/03/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4403101	N/A	2016/03/10	Automated Statchk
Reactive Silica	KONE	4408346	N/A	2016/03/08	Nancy Rogers
Sulphate	KONE	4408341	N/A	2016/03/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4403102	N/A	2016/03/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4417833	N/A	2016/03/15	Soraya Merchant
Turbidity	TURB	4407724	N/A	2016/03/07	Tiffany Morash
Volatile Organic Compounds in Water	HS/MS	4407282	N/A	2016/03/07	Shawn Helmkay

Maxxam ID: BYO985 Dup Sample ID: WELL 3 - 72 HR

Matrix: Water

Collected: 2016/03/03

Shipped:

Received: 2016/03/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Volatile Organic Compounds in Water	HS/MS	4407282	N/A	2016/03/07	Shawn Helmkay

Maxxam ID: BYO986 Collected: 2016/03/03 Sample ID: WELL 4 - 72 HR Shipped:

Matrix: Water

Received: 2016/03/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4403093	N/A	2016/03/07	Automated Statchk
Alkalinity	KONE	4408316	N/A	2016/03/08	Nancy Rogers
Anions	IC	4406780	N/A	2016/03/07	Fari Dehdezi
Chloride	KONE	4408337	N/A	2016/03/08	Nancy Rogers
TC/EC Non Drinking Water CFU/100mL		4404941	N/A	2016/03/04	Jason Wang
Colour	KONE	4408356	N/A	2016/03/08	Nancy Rogers
Conductance - water	AT	4407317	N/A	2016/03/07	Tiffany Morash

Englobe Corp. Client Project #: 20814

TEST SUMMARY

Maxxam ID: BYO986
Sample ID: WELL 4 - 72 HR
Matrix: Water

Collected: 20 Shipped:

2016/03/03

Received: 2016/03/03

Test Description Instrumentation Batch Extracted Date Analyzed Analyst

Fluoride	AT	4407312	N/A	2016/03/07	Tiffany Morash
Hardness (calculated as CaCO3)		4403881	N/A	2016/03/10	Automated Statchk
Metals Water Total MS	CICP/MS	4410445	2016/03/09	2016/03/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4403096	N/A	2016/03/10	Automated Statchk
Anion and Cation Sum	CALC	4403097	N/A	2016/03/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4407708	N/A	2016/03/07	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4408362	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4408366	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4403098	N/A	2016/03/10	Automated Statchk
рН	AT	4407314	N/A	2016/03/07	Tiffany Morash
Phosphorus - ortho	KONE	4408360	N/A	2016/03/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4403100	N/A	2016/03/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4403101	N/A	2016/03/10	Automated Statchk
Reactive Silica	KONE	4408346	N/A	2016/03/08	Nancy Rogers
Sulphate	KONE	4408341	N/A	2016/03/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4403102	N/A	2016/03/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4417833	N/A	2016/03/15	Soraya Merchant
Turbidity	TURB	4407724	N/A	2016/03/07	Tiffany Morash
Volatile Organic Compounds in Water	HS/MS	4407282	N/A	2016/03/07	Shawn Helmkay

Maxxam ID: BYO987 Sample ID: P1 Matrix: Water **Collected:** 2016/03/03

Shipped:

Received: 2016/03/03

Test Description Instrumentation **Extracted Date Analyzed** Batch Analyst Carbonate, Bicarbonate and Hydroxide CALC 4403093 2016/03/08 Automated Statchk N/A Alkalinity KONE 4408851 N/A 2016/03/08 Nancy Rogers Chloride KONE 4408858 N/A 2016/03/08 **Nancy Rogers** Colour KONE 4408866 N/A 2016/03/08 Nancy Rogers Conductance - water ΑT 4414244 N/A 2016/03/11 **Tammy Peters** Hardness (calculated as CaCO3) 4403881 N/A 2016/03/10 **Automated Statchk** Metals Water Total MS CICP/MS 4410445 2016/03/09 2016/03/10 Bryon Angevine Ion Balance (% Difference) CALC 4403096 N/A 2016/03/10 Automated Statchk Anion and Cation Sum CALC 4403097 N/A 2016/03/10 **Automated Statchk** Nitrogen Ammonia - water KONE 4407708 N/A 2016/03/07 Nancy Rogers Nitrogen - Nitrate + Nitrite KONE 4408870 N/A 2016/03/09 **Nancy Rogers** Nitrogen - Nitrite KONE 4408878 N/A 2016/03/09 Nancy Rogers Nitrogen - Nitrate (as N) CALC 4403906 N/A 2016/03/10 Automated Statchk 4408976 ΑТ N/A 2016/03/08 **Tammy Peters** 4408884 N/A Phosphorus - ortho **KONE** 2016/03/08 Nancy Rogers Sat. pH and Langelier Index (@ 20C) CALC 4403100 N/A 2016/03/10 Automated Statchk Sat. pH and Langelier Index (@ 4C) CALC 4403101 **Automated Statchk** N/A 2016/03/10 Reactive Silica KONE 4409098 N/A 2016/03/09 Nancy Rogers KONE 4408861 N/A 2016/03/08 Sulphate Nancy Rogers 4403102 Total Dissolved Solids (TDS calc) CALC N/A 2016/03/10 **Automated Statchk** Organic carbon - Total (TOC) TECH 4417833 N/A 2016/03/15 Soraya Merchant

Englobe Corp. Client Project #: 20814

TEST SUMMARY

Maxxam ID: BYO987 Sample ID: P1 Matrix: Water **Collected:** 2016/03/03

Shipped:

Received: 2016/03/03

Test Description Instrumentation Batch Extracted Date

Collected: 2016/03/03

Shipped:

Received: 2016/03/03

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystTurbidityTURB4407724N/A2016/03/07Tiffany Morash

Maxxam ID: BYO988 Sample ID: DW1 Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	4403905	N/A	2016/03/07	Automated Statchk
Alkalinity	KONE	4408851	N/A	2016/03/08	Nancy Rogers
Chloride	KONE	4408858	N/A	2016/03/08	Nancy Rogers
Colour	KONE	4408866	N/A	2016/03/08	Nancy Rogers
Conductance - water	AT	4407317	N/A	2016/03/07	Tiffany Morash
Hardness (calculated as CaCO3)		4403881	N/A	2016/03/10	Automated Statchk
Metals Water Total MS	CICP/MS	4410445	2016/03/09	2016/03/10	Bryon Angevine
Ion Balance (% Difference)	CALC	4403096	N/A	2016/03/10	Automated Statchk
Anion and Cation Sum	CALC	4403097	N/A	2016/03/10	Automated Statchk
Nitrogen Ammonia - water	KONE	4407708	N/A	2016/03/07	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4408870	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4408878	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	4403906	N/A	2016/03/10	Automated Statchk
Н	AT	4407314	N/A	2016/03/07	Tiffany Morash
Phosphorus - ortho	KONE	4408884	N/A	2016/03/08	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	4403100	N/A	2016/03/10	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4403101	N/A	2016/03/10	Automated Statchk
Reactive Silica	KONE	4409098	N/A	2016/03/08	Nancy Rogers
Sulphate	KONE	4408861	N/A	2016/03/08	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	4403102	N/A	2016/03/10	Automated Statchk
Organic carbon - Total (TOC)	TECH	4417833	N/A	2016/03/15	Soraya Merchant
Turbidity	TURB	4407729	N/A	2016/03/07	Tiffany Morash

Maxxam ID: BYO988 Dup Sample ID: DW1 Matrix: Water

Collected: 2016/03/03

Shipped:

Received: 2016/03/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	KONE	4408851	N/A	2016/03/08	Nancy Rogers
Chloride	KONE	4408858	N/A	2016/03/08	Nancy Rogers
Colour	KONE	4408866	N/A	2016/03/08	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4408870	N/A	2016/03/09	Nancy Rogers
Nitrogen - Nitrite	KONE	4408878	N/A	2016/03/09	Nancy Rogers
Phosphorus - ortho	KONE	4408884	N/A	2016/03/08	Nancy Rogers
Reactive Silica	KONE	4409098	N/A	2016/03/08	Nancy Rogers
Sulphate	KONE	4408861	N/A	2016/03/08	Nancy Rogers

Englobe Corp. Client Project #: 20814

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	4.7°C

Sample BYO987-01: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.

Results relate only to the items tested.

Englobe Corp. Client Project #: 20814

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4404941	JWA	Method Blank	Escherichia coli	2016/03/04	<1.0	,	CFU/10	
			Total Coliforms	2016/03/04	<1.0		CFU/10	
4406780	FD	Matrix Spike	Bromide (Br-)	2016/03/07		94	%	80 - 120
4406780	FD	Spiked Blank	Bromide (Br-)	2016/03/07		97	%	80 - 120
4406780	FD	Method Blank	Bromide (Br-)	2016/03/07	<1.0		mg/L	
4407282	SHL	Matrix Spike(BYO986)	1,2-Dichlorobenzene	2016/03/07	12.0	90	%	70 - 130
	0	matim opinic(5: 6500)	1,3-Dichlorobenzene	2016/03/07		89	%	70 - 130
			1,4-Dichlorobenzene	2016/03/07		88	%	70 - 130
			Chlorobenzene	2016/03/07		93	%	70 - 130
			1,1,1-Trichloroethane	2016/03/07		106	%	70 - 130
			1,1,2,2-Tetrachloroethane	2016/03/07		97	%	70 - 130
			1,1,2-Trichloroethane	2016/03/07		98	%	70 - 130
			1,1-Dichloroethane	2016/03/07		108	%	70 - 130
			1,1-Dichloroethylene	2016/03/07		109	%	70 - 130
			1,2-Dichloroethane	2016/03/07		94	% %	70 - 130
			1,2-Dichloropropane	2016/03/07		97	% %	70 - 130
			Benzene	2016/03/07		93	% %	70 - 130 70 - 130
			Bromodichloromethane			93 97	% %	
			Bromoform	2016/03/07		97 99	% %	70 - 130
			Bromomethane	2016/03/07				70 - 130
				2016/03/07		105	%	60 - 140
			Carbon Tetrachloride	2016/03/07		103	%	70 - 130
			Chloroethane	2016/03/07		101	%	60 - 140
			Chloroform	2016/03/07		98	%	70 - 130
			Chloromethane	2016/03/07		103	%	60 - 140
			cis-1,2-Dichloroethylene	2016/03/07		104	%	70 - 130
			cis-1,3-Dichloropropene	2016/03/07		97	%	70 - 130
			Dibromochloromethane	2016/03/07		97	%	70 - 130
			Ethylbenzene	2016/03/07		96	%	70 - 130
			Ethylene Dibromide	2016/03/07		103	%	70 - 130
			Methylene Chloride(Dichloromethane)	2016/03/07		101	%	70 - 130
			o-Xylene	2016/03/07		99	%	70 - 130
			p+m-Xylene	2016/03/07		96	%	70 - 130
			Styrene	2016/03/07		102	%	70 - 130
			Tetrachloroethylene	2016/03/07		99	%	70 - 130
			Toluene	2016/03/07		96	%	70 - 130
			trans-1,2-Dichloroethylene	2016/03/07		105	%	70 - 130
			trans-1,3-Dichloropropene	2016/03/07		102	%	70 - 130
			Trichloroethylene	2016/03/07		99	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2016/03/07		101	%	60 - 140
			Vinyl Chloride	2016/03/07		83	%	60 - 140
4407282	SHL	Matrix Spike	4-Bromofluorobenzene	2016/03/07		101	%	70 - 130
			D4-1,2-Dichloroethane	2016/03/07		100	%	70 - 130
			D8-Toluene	2016/03/07		95	%	70 - 130
4407282	SHL	Spiked Blank	1,2-Dichlorobenzene	2016/03/07		89	%	70 - 130
			1,3-Dichlorobenzene	2016/03/07		88	%	70 - 130
			1,4-Dichlorobenzene	2016/03/07		88	%	70 - 130
			Chlorobenzene	2016/03/07		93	%	70 - 130
			1,1,1-Trichloroethane	2016/03/07		105	%	70 - 130
			1,1,2,2-Tetrachloroethane	2016/03/07		93	%	70 - 130
			1,1,2-Trichloroethane	2016/03/07		96	%	70 - 130
			1,1-Dichloroethane	2016/03/07		107	%	70 - 130
			1,1-Dichloroethylene	2016/03/07		108	%	70 - 130
			1,2-Dichloroethane	2016/03/07		92	%	70 - 130
			1,2-Dichloropropane	2016/03/07		96	%	70 - 130
			1,2 Sicinoropropune	2010,00,00			/0	, 5 130

Englobe Corp. Client Project #: 20814

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
		, ,,	4-Bromofluorobenzene	2016/03/07		101	%	70 - 130
			Benzene	2016/03/07		93	%	70 - 130
			Bromodichloromethane	2016/03/07		95	%	70 - 130
			Bromoform	2016/03/07		97	%	70 - 130
			Bromomethane	2016/03/07		108	%	60 - 140
			Carbon Tetrachloride	2016/03/07		103	%	70 - 130
			Chloroethane	2016/03/07		101	%	60 - 140
			Chloroform	2016/03/07		97	%	70 - 130
			Chloromethane	2016/03/07		102	%	60 - 140
			cis-1,2-Dichloroethylene	2016/03/07		103	%	70 - 130
			cis-1,3-Dichloropropene	2016/03/07		100	%	70 - 130
			D4-1,2-Dichloroethane	2016/03/07		99	%	70 - 130
			D8-Toluene	2016/03/07		95	%	70 - 130
			Dibromochloromethane	2016/03/07		95	%	70 - 130
			Ethylbenzene	2016/03/07		96	%	70 - 130
			Ethylene Dibromide	2016/03/07		100	%	70 - 130
			Methylene Chloride(Dichloromethane)	2016/03/07		100	%	70 - 130
			o-Xylene	2016/03/07		98	%	70 - 130
			p+m-Xylene	2016/03/07		95	%	70 - 130
			Styrene	2016/03/07		101	%	70 - 130
			Tetrachloroethylene	2016/03/07		99	%	70 - 130
			Toluene	2016/03/07		95	%	70 - 130
			trans-1,2-Dichloroethylene	2016/03/07		104	%	70 - 130
			trans-1,3-Dichloropropene	2016/03/07		107	%	70 - 130
			Trichloroethylene	2016/03/07		99	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2016/03/07		100	%	60 - 140
			Vinyl Chloride	2016/03/07		87	%	60 - 140
4407282	SHL	Method Blank	1,2-Dichlorobenzene	2016/03/07	< 0.50		ug/L	
			1,3-Dichlorobenzene	2016/03/07	<1.0		ug/L	
			1,4-Dichlorobenzene	2016/03/07	<1.0		ug/L	
			Chlorobenzene	2016/03/07	<1.0		ug/L	
			1,1,1-Trichloroethane	2016/03/07	<1.0		ug/L	
			1,1,2,2-Tetrachloroethane	2016/03/07	<0.50		ug/L	
			1,1,2-Trichloroethane	2016/03/07	<1.0		ug/L	
			1,1-Dichloroethane	2016/03/07	<2.0		ug/L	
			1,1-Dichloroethylene	2016/03/07	<0.50		ug/L	
			1,2-Dichloroethane	2016/03/07	<1.0		ug/L	
			1,2-Dichloropropane	2016/03/07	<0.50		ug/L	
			4-Bromofluorobenzene	2016/03/07		99	%	70 - 130
			Benzene	2016/03/07	<1.0		ug/L	
			Bromodichloromethane	2016/03/07	<1.0		ug/L	
			Bromoform	2016/03/07	<1.0		ug/L	
			Bromomethane	2016/03/07	<0.50		ug/L	
			Carbon Tetrachloride	2016/03/07	<0.50		ug/L	
			Chloroethane	2016/03/07	<8.0		ug/L	
			Chloroform	2016/03/07	<1.0		ug/L	
			Chloromethane	2016/03/07	<8.0		ug/L	
			cis-1,2-Dichloroethylene	2016/03/07	<0.50		ug/L	
			cis-1,3-Dichloropropene	2016/03/07	<0.50	0-	ug/L	70 100
			D4-1,2-Dichloroethane	2016/03/07		95 08	%	70 - 130
			D8-Toluene	2016/03/07	-4.0	98	% /I	70 - 130
			Dibromochloromethane	2016/03/07	<1.0		ug/L	
			Ethylbenzene	2016/03/07	<1.0		ug/L	
			Ethylene Dibromide	2016/03/07	<0.20		ug/L	

Englobe Corp. Client Project #: 20814

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Methylene Chloride(Dichloromethane)	2016/03/07	<3.0		ug/L	
			o-Xylene	2016/03/07	<1.0		ug/L	
			p+m-Xylene	2016/03/07	<2.0		ug/L	
			Styrene	2016/03/07	<1.0		ug/L	
			Tetrachloroethylene	2016/03/07	<1.0		ug/L	
			Toluene	2016/03/07	<1.0		ug/L	
			trans-1,2-Dichloroethylene	2016/03/07	<0.50		ug/L	
			trans-1,3-Dichloropropene	2016/03/07	<0.50		ug/L	
			Trichloroethylene	2016/03/07	<1.0		ug/L	
			Trichlorofluoromethane (FREON 11)	2016/03/07	<8.0		ug/L	
			Vinyl Chloride	2016/03/07	<0.50		ug/L	
4407282	SHL	RPD - Sample/Sample Dup	· ·	2016/03/07	NC		ug/ L %	40
4407202	SIIL	KFD - Sample/Sample Dup	1,3-Dichlorobenzene	2016/03/07	NC		%	40
			1,4-Dichlorobenzene	2016/03/07	NC		% %	40
			Chlorobenzene		NC		% %	
				2016/03/07				40
			1,1,1-Trichloroethane	2016/03/07	NC		%	40
			1,1,2,2-Tetrachloroethane	2016/03/07	NC		%	40
			1,1,2-Trichloroethane	2016/03/07	NC		%	40
			1,1-Dichloroethane	2016/03/07	NC		%	40
			1,1-Dichloroethylene	2016/03/07	NC		%	40
			1,2-Dichloroethane	2016/03/07	NC		%	40
			1,2-Dichloropropane	2016/03/07	NC		%	40
			Benzene	2016/03/07	NC		%	40
			Bromodichloromethane	2016/03/07	NC		%	40
			Bromoform	2016/03/07	NC		%	40
			Bromomethane	2016/03/07	NC		%	40
			Carbon Tetrachloride	2016/03/07	NC		%	40
			Chloroethane	2016/03/07	NC		%	40
			Chloroform	2016/03/07	NC		%	40
			Chloromethane	2016/03/07	NC		%	40
			cis-1,2-Dichloroethylene	2016/03/07	NC		%	40
			cis-1,3-Dichloropropene	2016/03/07	NC		%	40
			Dibromochloromethane	2016/03/07	NC		%	40
			Ethylbenzene	2016/03/07	NC		%	40
			Ethylene Dibromide	2016/03/07	NC		%	40
			Methylene Chloride(Dichloromethane)	2016/03/07	NC		%	40
			o-Xylene	2016/03/07	NC		%	40
			p+m-Xylene	2016/03/07	NC		%	40
			Styrene	2016/03/07	NC		%	40
			Tetrachloroethylene	2016/03/07	NC		%	40
			Toluene	2016/03/07	NC		%	40
			trans-1,2-Dichloroethylene	2016/03/07	NC		%	40
			trans-1,3-Dichloropropene	2016/03/07	NC		%	40
			Trichloroethylene	2016/03/07	NC		%	40
			Trichlorofluoromethane (FREON 11)	2016/03/07	NC		%	40
			Vinyl Chloride	2016/03/07	NC		%	40
4407312	TMO	Matrix Spike	Dissolved Fluoride (F-)	2016/03/07		100	%	80 - 120
4407312	TMO	Spiked Blank	Dissolved Fluoride (F-)	2016/03/07		103	%	80 - 120
4407312	TMO	Method Blank	Dissolved Fluoride (F-)	2016/03/07	< 0.10		mg/L	
4407312	TMO	RPD - Sample/Sample Dup	Dissolved Fluoride (F-)	2016/03/07	NC		%	25
4407314	TMO	QC Standard	pH	2016/03/07	-	100	%	97 - 103
4407314	TMO	RPD - Sample/Sample Dup	•	2016/03/07	1.2		%	N/A
4407317	TMO		Conductivity	2016/03/07	-	101	%	80 - 120
4407317	TMO	Method Blank	Conductivity	2016/03/07	<1.0	-01	uS/cm	120
, , , , , , , , ,	- 1110	caroa biarik		-010/03/07	`1.0		می دارا	

Englobe Corp. Client Project #: 20814

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4407317	TMO	RPD - Sample/Sample Dup	Conductivity	2016/03/07	0.14		%	25
4407708	NRG	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2016/03/07		104	%	80 - 120
4407708	NRG	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2016/03/07		94	%	80 - 120
4407708	NRG	Method Blank	Nitrogen (Ammonia Nitrogen)	2016/03/07	< 0.050		mg/L	
4407708	NRG	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2016/03/07	NC		%	20
4407724	TMO	QC Standard	Turbidity	2016/03/07		94	%	80 - 120
4407724	TMO	Method Blank	Turbidity	2016/03/07	< 0.10		NTU	
4407724	TMO	RPD - Sample/Sample Dup	Turbidity	2016/03/07	NC		%	20
4407729	TMO	QC Standard	Turbidity	2016/03/07		87	%	80 - 120
4407729	TMO	Method Blank	Turbidity	2016/03/07	< 0.10		NTU	
4407729	TMO	RPD - Sample/Sample Dup	Turbidity	2016/03/07	NC		%	20
4408316	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2016/03/08		NC	%	80 - 120
4408316	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/03/08		102	%	80 - 120
4408316	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2016/03/08	<5.0		mg/L	
4408316	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2016/03/08	1.2		%	25
4408337	NRG	Matrix Spike	Dissolved Chloride (CI)	2016/03/08		NC	%	80 - 120
4408337	NRG	QC Standard	Dissolved Chloride (CI)	2016/03/08		102	%	80 - 120
4408337	NRG	Spiked Blank	Dissolved Chloride (Cl)	2016/03/08		106	%	80 - 120
4408337	NRG	Method Blank	Dissolved Chloride (CI)	2016/03/08	<1.0		mg/L	
4408337	NRG	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2016/03/08	7.7		%	25
4408341	NRG	Matrix Spike	Dissolved Sulphate (SO4)	2016/03/08		NC	%	80 - 120
4408341	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2016/03/08		113	%	80 - 120
4408341	NRG	Method Blank	Dissolved Sulphate (SO4)	2016/03/08	<2.0		mg/L	
4408341	NRG	RPD - Sample/Sample Dup		2016/03/08	2.5		%	25
4408346	NRG	Matrix Spike	Reactive Silica (SiO2)	2016/03/08		96	%	80 - 120
4408346	NRG	Spiked Blank	Reactive Silica (SiO2)	2016/03/08		102	%	80 - 120
4408346	NRG	Method Blank	Reactive Silica (SiO2)	2016/03/08	< 0.50		mg/L	
4408346	NRG	RPD - Sample/Sample Dup		2016/03/08	14		%	25
4408356	NRG	Spiked Blank	Colour	2016/03/08		113	%	80 - 120
4408356	NRG	Method Blank	Colour	2016/03/08	<5.0		TCU	
4408356	NRG			2016/03/08	NC		%	20
4408360	NRG	Matrix Spike	Orthophosphate (P)	2016/03/08		89	%	80 - 120
4408360	NRG	Spiked Blank	Orthophosphate (P)	2016/03/08		97	%	80 - 120
4408360	NRG	Method Blank	Orthophosphate (P)	2016/03/08	< 0.010		mg/L	
4408360	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2016/03/08	NC		%	25
4408362	NRG	Matrix Spike	Nitrate + Nitrite (N)	2016/03/09		103	%	80 - 120
4408362		Spiked Blank	Nitrate + Nitrite (N)	2016/03/09		103	%	80 - 120
4408362		Method Blank	Nitrate + Nitrite (N)	2016/03/09	<0.050	103	mg/L	00 120
4408362	NRG			2016/03/09	0.81		%	25
4408366	NRG	Matrix Spike	Nitrite (N)	2016/03/09	0.01	NC	%	80 - 120
4408366	NRG	Spiked Blank	Nitrite (N)	2016/03/09		90	%	80 - 120
4408366	NRG	Method Blank	Nitrite (N)	2016/03/09	< 0.010	30	mg/L	00 120
4408366	NRG	RPD - Sample/Sample Dup	Nitrite (N)	2016/03/09	0.39		%	25
4408851	NRG	Matrix Spike(BYO988)	Total Alkalinity (Total as CaCO3)	2016/03/08	0.55	101	%	80 - 120
4408851	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2016/03/08		103	%	80 - 120
4408851	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2016/03/08	<5.0	103	mg/L	00 120
4408851	NRG		Total Alkalinity (Total as CaCO3)	2016/03/08	NC		111g/L %	25
4408858	NRG	Matrix Spike(BYO988)	Dissolved Chloride (CI)	2016/03/08	INC	NC	% %	80 - 120
4408858	NRG	QC Standard	Dissolved Chloride (CI)	2016/03/08		104	% %	80 - 120 80 - 120
4408858	NRG	Spiked Blank	Dissolved Chloride (CI)	2016/03/08		104	% %	80 - 120 80 - 120
4408858	NRG	Method Blank	Dissolved Chloride (CI)	2016/03/08	<1.0	104		00 - 120
4408858	NRG		Dissolved Chloride (CI)	2016/03/08	1.0		mg/L %	25
4408861	NRG	Matrix Spike(BYO988)	Dissolved Chloride (Cr) Dissolved Sulphate (SO4)	2016/03/08	1.0	114		80 - 120
		• • •					% %	
4408861	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2016/03/08		111	<u>%</u>	80 - 120

Englobe Corp. Client Project #: 20814

QA/QC			_	Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4408861	NRG	Method Blank	Dissolved Sulphate (SO4)	2016/03/08	<2.0		mg/L	
4408861	NRG	RPD - Sample/Sample Dup		2016/03/08	NC		%	25
4408866	NRG	Spiked Blank	Colour	2016/03/08		111	%	80 - 120
4408866	NRG	Method Blank	Colour	2016/03/08	<5.0		TCU	
4408866	NRG		Colour	2016/03/08	NC		%	20
4408870	NRG	Matrix Spike(BYO988)	Nitrate + Nitrite (N)	2016/03/09		102	%	80 - 120
4408870	NRG	Spiked Blank	Nitrate + Nitrite (N)	2016/03/09		101	%	80 - 120
4408870	NRG	Method Blank	Nitrate + Nitrite (N)	2016/03/09	<0.050		mg/L	
4408870	NRG		Nitrate + Nitrite (N)	2016/03/09	NC		%	25
4408878	NRG	Matrix Spike(BYO988)	Nitrite (N)	2016/03/09		94	%	80 - 120
4408878	NRG	Spiked Blank	Nitrite (N)	2016/03/09		93	%	80 - 120
4408878	NRG	Method Blank	Nitrite (N)	2016/03/09	< 0.010		mg/L	
4408878	NRG	RPD - Sample/Sample Dup	Nitrite (N)	2016/03/09	NC		%	25
4408884	NRG	Matrix Spike(BYO988)	Orthophosphate (P)	2016/03/08		88	%	80 - 120
4408884	NRG	Spiked Blank	Orthophosphate (P)	2016/03/08		101	%	80 - 120
4408884	NRG	Method Blank	Orthophosphate (P)	2016/03/08	< 0.010		mg/L	
4408884	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2016/03/08	NC		%	25
4408976	TPE	QC Standard	рН	2016/03/08		100	%	N/A
4408976	TPE	RPD - Sample/Sample Dup	рН	2016/03/08	0.15		%	N/A
4409098	NRG	Matrix Spike(BYO988)	Reactive Silica (SiO2)	2016/03/08		NC	%	80 - 120
4409098	NRG	Spiked Blank	Reactive Silica (SiO2)	2016/03/08		94	%	80 - 120
4409098	NRG	Method Blank	Reactive Silica (SiO2)	2016/03/08	< 0.50		mg/L	
4409098	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2016/03/08	8.3		%	25
4410445	BAN	Matrix Spike	Total Aluminum (AI)	2016/03/10		102	%	80 - 120
			Total Antimony (Sb)	2016/03/10		102	%	80 - 120
			Total Arsenic (As)	2016/03/10		97	%	80 - 120
			Total Barium (Ba)	2016/03/10		94	%	80 - 120
			Total Beryllium (Be)	2016/03/10		95	%	80 - 120
			Total Bismuth (Bi)	2016/03/10		94	%	80 - 120
			Total Boron (B)	2016/03/10		NC	%	80 - 120
			Total Cadmium (Cd)	2016/03/10		97	%	80 - 120
			Total Calcium (Ca)	2016/03/10		NC	%	80 - 120
			Total Chromium (Cr)	2016/03/10		95	%	80 - 120
			Total Cobalt (Co)	2016/03/10		94	%	80 - 120
			Total Copper (Cu)	2016/03/10		NC	%	80 - 120
			Total Iron (Fe)	2016/03/10		95	%	80 - 120
			Total Lead (Pb)	2016/03/10		93	%	80 - 120
			Total Magnesium (Mg)	2016/03/10		NC	%	80 - 120
			Total Manganese (Mn)	2016/03/10		95	%	80 - 120
			Total Molybdenum (Mo)	2016/03/10		101	%	80 - 120
			Total Nickel (Ni)	2016/03/10		93	%	80 - 120
			Total Phosphorus (P)	2016/03/10		104	%	80 - 120
			Total Potassium (K)	2016/03/10		NC	%	80 - 120
			Total Selenium (Se)	2016/03/10		98	%	80 - 120
			Total Silver (Ag)	2016/03/10		96	%	80 - 120
			Total Sodium (Na)	2016/03/10		NC	%	80 - 120
			Total Strontium (Sr)	2016/03/10		NC	%	80 - 120
			Total Thallium (TI)	2016/03/10		95	% %	80 - 120
			Total Tin (Sn)	2016/03/10		102	% %	80 - 120
			Total Titanium (Ti)	2016/03/10		102	% %	80 - 120 80 - 120
			Total Uranium (U)	2016/03/10		100	% %	80 - 120 80 - 120
			Total Vanadium (V)	2016/03/10		99	% %	80 - 120 80 - 120
			Total Zinc (Zn)	2016/03/10		99	% %	80 - 120 80 - 120
4410445	DANI	Snikad Plank						
4410445	BAN	Spiked Blank	Total Aluminum (Al)	2016/03/10		102	%	80 - 120

Englobe Corp. Client Project #: 20814

QA/QC				Date		%		
Batch	Init QC Typ	e	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
	•		Total Antimony (Sb)	2016/03/10		95	%	80 - 120
			Total Arsenic (As)	2016/03/10		94	%	80 - 120
			Total Barium (Ba)	2016/03/10		92	%	80 - 120
			Total Beryllium (Be)	2016/03/10		90	%	80 - 120
			Total Bismuth (Bi)	2016/03/10		98	%	80 - 120
			Total Boron (B)	2016/03/10		91	%	80 - 120
			Total Cadmium (Cd)	2016/03/10		94	%	80 - 120
			Total Calcium (Ca)	2016/03/10		97	%	80 - 120
			Total Chromium (Cr)	2016/03/10		94	%	80 - 120
			Total Cobalt (Co)	2016/03/10		95	%	80 - 120
			Total Copper (Cu)	2016/03/10		94	%	80 - 120
			Total Iron (Fe)	2016/03/10		99	%	80 - 120
			Total Lead (Pb)	2016/03/10		94	%	80 - 120
			Total Magnesium (Mg)	2016/03/10		104	%	80 - 120
			Total Magnesium (Mg)	2016/03/10		96	% %	80 - 120
			Total Molybdenum (Mo)					80 - 120
			, , , ,	2016/03/10		95	%	
			Total Nickel (Ni)	2016/03/10		97	%	80 - 120
			Total Phosphorus (P)	2016/03/10		103	%	80 - 120
			Total Potassium (K)	2016/03/10		100	%	80 - 120
			Total Selenium (Se)	2016/03/10		95	%	80 - 120
			Total Silver (Ag)	2016/03/10		94	%	80 - 120
			Total Sodium (Na)	2016/03/10		103	%	80 - 120
			Total Strontium (Sr)	2016/03/10		97	%	80 - 120
			Total Thallium (TI)	2016/03/10		95	%	80 - 120
			Total Tin (Sn)	2016/03/10		96	%	80 - 120
			Total Titanium (Ti)	2016/03/10		99	%	80 - 120
			Total Uranium (U)	2016/03/10		102	%	80 - 120
			Total Vanadium (V)	2016/03/10		96	%	80 - 120
			Total Zinc (Zn)	2016/03/10		94	%	80 - 120
4410445	BAN Metho	od Blank	Total Aluminum (Al)	2016/03/10	5.6,		ug/L	
					RDL=5.0			
			Total Antimony (Sb)	2016/03/10	<1.0		ug/L	
			Total Arsenic (As)	2016/03/10	<1.0		ug/L	
			Total Barium (Ba)	2016/03/10	<1.0		ug/L	
			Total Beryllium (Be)	2016/03/10	<1.0		ug/L	
			Total Bismuth (Bi)	2016/03/10	<2.0		ug/L	
			Total Boron (B)	2016/03/10	<50		ug/L	
			Total Cadmium (Cd)	2016/03/10	<0.010		ug/L	
			Total Calcium (Ca)	2016/03/10	<100		ug/L	
			Total Chromium (Cr)	2016/03/10	<1.0		ug/L	
			Total Cobalt (Co)	2016/03/10	<0.40		ug/L	
			Total Copper (Cu)	2016/03/10	<2.0		ug/L	
			Total Iron (Fe)	2016/03/10	<50		ug/L	
			Total Lead (Pb)	2016/03/10	<0.50			
							ug/L	
			Total Magnesium (Mg)	2016/03/10	<100		ug/L	
			Total Manganese (Mn)	2016/03/10	<2.0		ug/L	
			Total Molybdenum (Mo)	2016/03/10	<2.0		ug/L	
			Total Nickel (Ni)	2016/03/10	<2.0		ug/L	
			Total Phosphorus (P)	2016/03/10	<100		ug/L	
			Total Potassium (K)	2016/03/10	<100		ug/L	
			Total Selenium (Se)	2016/03/10	<1.0		ug/L	
			Total Silver (Ag)	2016/03/10	<0.10		ug/L	
			Total Sodium (Na)	2016/03/10	<100		ug/L	
			Total Strontium (Sr)	2016/03/10	<2.0		ug/L	

Englobe Corp. Client Project #: 20814

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery		QC Limits
			Total Thallium (TI)	2016/03/10	<0.10		ug/L	
			Total Tin (Sn)	2016/03/10	<2.0		ug/L	
			Total Titanium (Ti)	2016/03/10	<2.0		ug/L	
			Total Uranium (U)	2016/03/10	< 0.10		ug/L	
			Total Vanadium (V)	2016/03/10	<2.0		ug/L	
			Total Zinc (Zn)	2016/03/10	<5.0		ug/L	
4410445	BAN	RPD - Sample/Sample Dup	Total Aluminum (AI)	2016/03/10	0.16		%	20
			Total Antimony (Sb)	2016/03/10	NC		%	20
			Total Arsenic (As)	2016/03/10	NC		%	20
			Total Barium (Ba)	2016/03/10	NC		%	20
			Total Beryllium (Be)	2016/03/10	NC		%	20
			Total Bismuth (Bi)	2016/03/10	NC		%	20
			Total Boron (B)	2016/03/10	0.083		%	20
			Total Cadmium (Cd)	2016/03/10	5.2		%	20
			Total Calcium (Ca)	2016/03/10	1.2		%	20
			Total Chromium (Cr)	2016/03/10	NC		%	20
			Total Cobalt (Co)	2016/03/10	NC		%	20
			Total Copper (Cu)	2016/03/10	2.4		%	20
			Total Iron (Fe)	2016/03/10	3.8		%	20
			Total Lead (Pb)	2016/03/10	NC		%	20
			Total Magnesium (Mg)	2016/03/10	2.4		%	20
			Total Manganese (Mn)	2016/03/10	NC		%	20
			Total Molybdenum (Mo)	2016/03/10	NC		%	20
			Total Nickel (Ni)	2016/03/10	NC		%	20
			Total Phosphorus (P)	2016/03/10	NC		%	20
			Total Potassium (K)	2016/03/10	1.2		%	20
			Total Selenium (Se)	2016/03/10	NC		%	20
			Total Silver (Ag)	2016/03/10	NC		%	20
			Total Sodium (Na)	2016/03/10	1.6		%	20
			Total Strontium (Sr)	2016/03/10	3.2		%	20
			Total Thallium (TI)	2016/03/10	NC		%	20
			Total Tin (Sn)	2016/03/10	NC		%	20
			Total Titanium (Ti)	2016/03/10	NC		%	20
			Total Uranium (U)	2016/03/10	NC		%	20
			Total Vanadium (V)	2016/03/10	2.5		%	20
			Total Zinc (Zn)	2016/03/10	1.1		%	20
4414244	TPE	Spiked Blank	Conductivity	2016/03/11		101	%	80 - 120
4414244	TPE	Method Blank	Conductivity	2016/03/11	1.4,		uS/cm	
			•		RDL=1.0			
4414244	TPE	RPD - Sample/Sample Dup	Conductivity	2016/03/11	0.44		%	25
4417833	SMT	Matrix Spike	Total Organic Carbon (C)	2016/03/15	J. 1 1	98	%	80 - 120
4417833	SMT	Spiked Blank	Total Organic Carbon (C)	2016/03/15		99	%	80 - 120
4417833	SMT	Method Blank	Total Organic Carbon (C)	2016/03/15	<0.50	55	mg/L	30 120

Englobe Corp. Client Project #: 20814

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4417833	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2016/03/15	NC		%	20

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Englobe Corp. Client Project #: 20814

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Original Signed	
Andrew VanWychen, Bedford Micro	
Original Signed	
Eric Dearman, Scientific Specialist	
Original Signed	
Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist	
Original Signed	
Mike MacGillivray, Scientific Specialist (Inorganics)	
Original Signed	
Rosemarie MacDonald, Scientific Specialist (Organics)	
Manage has a second and a second a second and a second an	tronic signature and have the required "signatories" as per section 5.10.2 of ISO/IEC

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

V	12	7	9	Lan	aly	n	200 Bluewater Road, Suite 105, Bedford, Nova 49 Elizabeth Ave., St John's, NL A1A 1W9 90 Esplanade Sydney, NS B1P 1A1 www.maxxamanalytics.com		Tel: 70 Tel: 90	02-420-020 09-754-020 02-567-125 dford@m	3 Fa 5 Fa	x: 902 x: 709 x: 902 mana	-754- -539-	8612 6504	Toll F	ree: 1-8 ree: 1-8 ree: 1-8	88-49	2-7227			XXAI C #:			5 9				Page	·	L of		_
Thi	col	umr	for	lab (use o	neration	INVOICE INFORMATION:	_		REPORT	INF	ORM	ATIO	ON G	diff	ers fr	om li	nvoice):	PO f	1							TU	RNAF	OUN	D TIME	E
Client Code Company Name: Siglobe Maxxam Job #							REPORT INFORMATION (if differs from invoice): Company Name: Same								Project # / Phase # 208 L								Standard 🗟									
											-	160				Proj	ect Na	me / S	Site Lo	_		_		10								
					_		1.	W_		Contact		e:	-		_					Qua	te				_		_	lf F	IUSH	Specif	fy Date	F2
E	36	4	3(او	09		Address: Liza Landon Co. Postal	in		Address	:	-			Post	al				Site	#							-				
	seut	75				Temp	Code		-				-	-	Code	е				Task	Order	#		_		-		Pr	e-sche	dule ru	ish work	k
Cooler ID	Seal Present	Seal Intact	Temp 1	Temp 2	Temp 3	Average Temp	Email:			Email:		-							-	Sam	pled b	v			_	_		Jar	narge fi rs used	but		
S	Ses	Ses				Ave	Ph: Fax: Guideline Requirements / Detection	- I iia- / C		Ph:					Fax:		-	-	1			-		0.1			_	not	4			
YE	Integr	NO)	8	/ Check		*Specify Matrix: Surface/Salt/Ground/Te	npwater/Sew	rage/Efflu	ent/		Field Filtered & Preserved	Lab Filtration Required	-30 Choose Total or Diss Metals	RCAP-MS (Total or Diss Metals	Total Digest-(Default Method) For well water, surface water Fig. Dissalved	or ground water	fercury fetals & Mercury	Metals Total Digest - for Ocean	fercury ow level by Cold Vapour AA	Selenium (low level) Reg'd for CCME Residential, Parklands, Agricultural	tot Water soluble Boron equired for CCME Agricultural)	RBCA Hydrocarbons (BTEX, C6-C32)	ydrocarbons Soil (Potable), NS Fuel Nil Spill Policy Low Level BTEX, C6-C32 IR Potable Water	BTEX, VPH, Low level T.E.H.	IPH Fractionation	PAH's with Acridine. Quinoline	NAM STORY	ST HPL	revide	oniche	7
							Potable/NonPotable/Tis Field Sample Identification	Matrix*	Date/Tir		rer ype of tiles	-ple	3b Fi	RCAP-30	CAP	Me Me	tals	2 2		etals	Soil	I.S	8.8		rocar		-	100	10	K	0	5
							Well 3 - 72h	1	Sample 10405 3/3/	245	00	X	ï	Œ	×	Wa	ater		Ī									2		2	2 2	?
							2 Well 4-72h-	6w	10 ho	O axi	00	X			N													×	8	2	77	
							3 P1	GW	3/3/1	6 1×10	680	Χ			N																	
							DW1	PW	3/3/	116 2	/	X			V												-	1				
				_			5			+						-	4		-							+	+	+	1		_	-
					*		6 1	,		_						-	+		-						+	_	+	+	1		+	4
							7										+			1					+	+		+	-		+	+
		_					8												+	-					-	+	+	+	-		-	_
					_		9										4		1	-					+	+		\perp	1			_
							10	1																								
							Original	Sigr	ned	31	Date 3/	16)	Time	h:	50	1	Ori	gin	al :	Sig	ne	d			Da	te	004	Time		7 41) a
				2				J									1	_										201	b Mf	IK	3 12	- 4

Yellow : Mail

White: Maxxam

Pink: Client

ATL FCD 00149 / Revision 10

