TRAFFIC IMPACT STUDY WILLOW TREE TOWER

PREPARED FOR: ARMCO CAPITAL INC.

APRIL 2019

Project No. 191-01937

TABLE OF CONTENTS

1	INTRODUCTION	1
2	STUDY AREA DESCRIPTIONS	3
3	TRIP GENERATION, DISTRIBUTION, AND	
	ASSIGNMENT	6
4	INTERSECTION OPERATIONAL ANALYSIS	9
5	SUMMARY, CONCLUSIONS, AND	
	RECOMMENDATIONS	.12
5.1	Summary	12
5.2	Recommendations	
5.3	Conclusions	14

APPENDICES

A TRAFFIC VOLUME DATA AND INTERSECTION PERFORMANCE ANALYSIS

1 INTRODUCTION

Background

Plans are being prepared for the development of Willow Tree Tower, a multi-use development in Halifax, NS. The proposed development includes 2 developed parcels (PID 00140020 and 00140012) at the northwest corner of Robie Street at Quinpool Road ("Willow Tree Intersection") in Halifax, Nova Scotia (See Figure 1).

The development is planned to include up to 295 residential units and up to 11,500 square feet of commercial space. There will be an underground parking garage with about 94 parking spaces. Completion of the development is anticipated by 2021.

WSP Canada Inc. has been retained to complete a Traffic Impact Study for this development.

A Traffic Impact Study Usually Considers Four Questions A TIS usually consists of determining answers for the following questions:

- 1. What is the existing transportation situation adjacent to the study site? How have volumes changed historically?
- 2. **What transportation changes are expected** at key Study Area locations? How many vehicle and active mode trips are expected to be generated by the proposed development during weekday peak hours? What routes are the trips expected to use to travel within and through the Study Area?
- 3. What transportation impacts will occur on Study Area roads, sidewalks, and intersections?
- 4. What transportation improvements are required to mitigate project impacts on Study Area travel? Are there transportation modifications that should be made to improve the travel experience for all users?

Study Objectives

- 1. Develop projected 2021 background weekday AM and PM peak hourly volumes for Study Area roads that do not include trips generated by proposed site development.
- 2. Estimate the number of weekday AM and PM peak hour trips that will be generated by the proposed development.
- 3. Distribute and assign site generated trips to Study Area intersections to project 2021 peak hourly volumes that include site generated trips.
- 4. Evaluate impacts of site generated traffic on the performance of study intersections.
- 5. Complete traffic signal and turn lane warrant analyses, as necessary, for Study Area intersections and recommend improvements that may be needed at study intersections to mitigate the impacts of site development.

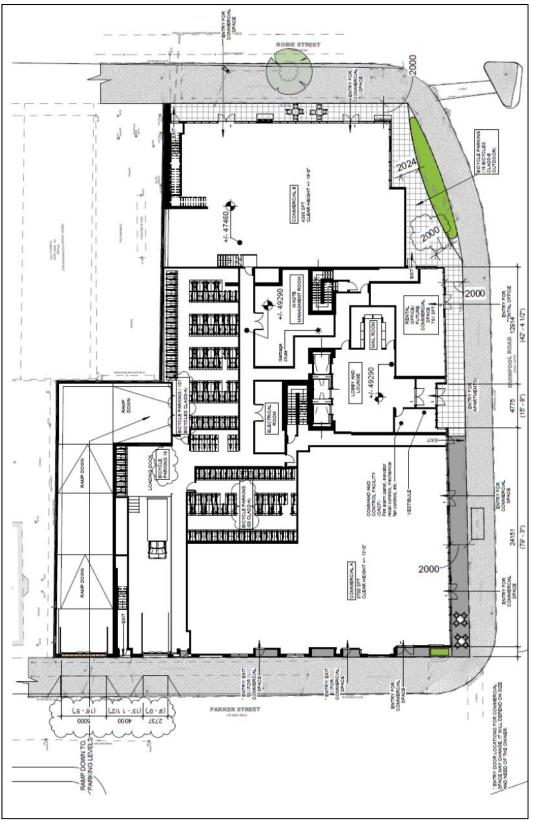


Figure 1 – Site Plan

2 STUDY AREA DESCRIPTIONS

Description of Proposed Development and Site Access The proposed site is 2 developed parcels bounded by Quinpool Road, Robie Street, Parker Street / Windsor Street, and existing development in the north. The development is planned to include up to 295 residential units and up to 11,500 square feet of commercial space.

Pedestrian access will be provided on Windsor Street, Quinpool Road, and Robie Street.

Vehicular access to the 94 underground parking spaces is planned via one driveway on Windsor Street with driveway configuration similar to that shown conceptually in Figure 2. While alignment and spacing will need to be confirmed during design, it is expected that sight distance is sufficient and that the driveway connection will be at least 30m from Quinpool Road and at least 8m from the realigned Parker Street.

In addition to the benefit to the site, this realignment could provide the following additional benefits:

Figure 2 – Driveway Alignment Concept

- Shorten crossings for pedestrians on the east side of Windsor Street;
- Better accommodate a potential future bicycle connection along Windsor Street to Quinpool Road; and,
- Reduce wrong way movements where traffic on Parker Street were observed turning directly onto Windsor Street during the PM peak (See Table A-4, Appendix).

It is anticipated that buildout of the development will complete by 2021.

Existing Road Descriptions

Robie Street, just to the east of the site is a 6-lane divided arterial roadway with concrete sidewalks on both sides and time restricted parking on the east side. Parking is restricted on the west (site) side during the AM peak period but is otherwise unrestricted. Robie Street is an important north-south corridor on the Halifax Peninsula that provides access to the hospitals and universities and serves as a key link for several bus routes. Robie Street has a 50 km/h speed limit.

Quinpool Road, just to the south of the site is a 4-lane undivided arterial roadway with concrete sidewalks and time restricted parking on both sides. Quinpool Road has a 50 km/h speed limit.

Windsor Street, just to the west of the site is a 2-lane major collector roadway with concrete sidewalks and restricted parking on the west side and permitted parking on the east side. The Windsor Street bicycle lane begins just to the north of the site area. Windsor Street has a 50 km/h speed limit.

Intersection Descriptions

The Robie Street / Quinpool Road / Cogswell Street / Bell Road intersection is signalized with pedestrian crossings on all approaches and general lane configurations illustrated in Figure 3.

The Robie Street – Welsford Street T-intersection is unsignalized with STOP control on Welsford Street. There is an existing RA-5 crosswalk crossing the Robie Street north approach. Welsford Street is right-in, right-out as there is a concrete median along Robie Street.

The Quinpool Road – Windsor Street T-intersection is unsignalized with STOP control on Windsor Street. Windsor Street is right-in, right-out as there is a concrete median along Quinpool Road in this area.

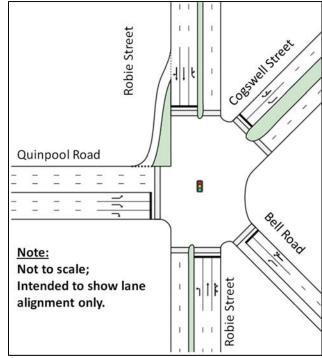


Figure 3 – General Alignment of Quinpool / Robie Intersection

The Windsor Street – **Welsford Street** T-intersection is unsignalized with STOP control on Welsford Street. There is an existing RA-4 crosswalk crossing the Windsor Street north approach. All approaches are a single lane.

Turning Movement Counts

Intersection Turning Movement Counts were obtained by WSP during morning (7-9 AM) and afternoon (4-6 PM) peak periods in February 2019 at the following intersections:

- Robie / Quinpool / Cogswell / Bell;
- Robie at Welsford; and,
- Windsor at Parker.

Additional intersection Turning Movement Counts were obtained by HRM Traffic Management during AM and PM peak periods at the Windsor Street at Welsford Street intersection on Thursday, June 1, 2017.

Each of the four intersection turning movement counts have been tabulated (See Appendix) in 15-minute intervals with peak hours indicated by shaded areas.

Growth Trends

Traffic volumes collected by HRM for this area were analyzed to develop an understanding of traffic growth trends. Results do not indicate a clear growth trend for traffic volumes on Windsor Street, Quinpool Road, or Robie Street near the site (and in fact indicate a marginal decrease).

Based on a review of the available historical traffic data it was concluded that traffic growth will not be applied to the observed trips to project 2021 traffic volumes for the study.

Projected 2021 Background Volumes Projected 2021 AM and PM peak hour background traffic volumes are shown diagrammatically in Figure A-1, Appendix.

Active Transportation / Transit

The site has good accessibility for pedestrians, with concrete sidewalks on both sides of all study area streets. There are signalized crosswalks at all approaches of the Robie Street / Quinpool Road intersection, as well as an RA-5 crosswalk crossing Robie Street at Welsford Street and an RA-4 crosswalk crossing Windsor Street at Welsford Street.

The site is well connected for bicyclists with existing bicycle lanes on Windsor Street, approved local street bikeways on Allan Street in the west and Vernon Street in the South, and the Halifax Common is just to the east (See Figure 4). HRM is also planning to provide a local street bikeway or protected bidirectional bikeway along Welsford Street just to the north of the site to connect Windsor Street to the Halifax Common.

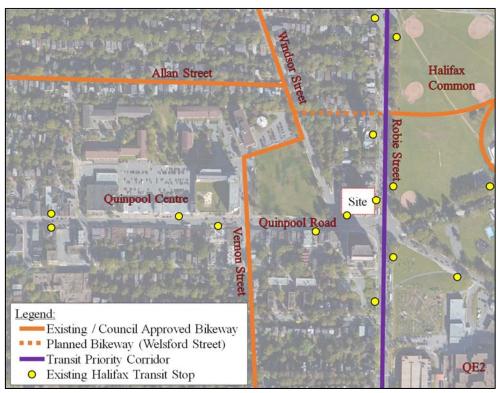


Figure 4 - Area Existing / Planned Bikeways and Transit Infrastructure

Halifax Transit operates Routes #4 (Universities), 7 (Robie), 80 (Sackville), 81 (Hemlock Ravine), and 90 (Larry Uteck) on Robie Street with northbound and southbound stops within 100 metres of the site (See Figure 4).

Additional transit service (Routes #9 (Herring Cove), 32 (Cowie Hill Express), and 123 (Timberlea Express) is available in front of the site on Quinpool Road with eastbound and westbound stops within 100 metres of the site.

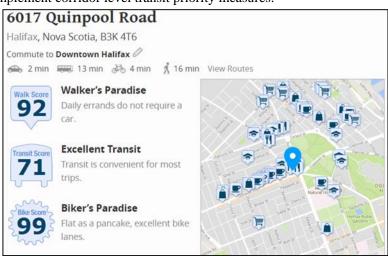
Robie Street is a designated 'Transit Priority Corridor' in this area and a planning study (WSP 2018) has been completed that considered options to implement transit lanes along the full corridor.

3 TRIP GENERATION, DISTRIBUTION, AND ASSIGNMENT

Anticipated Land Use The proposed development is planned to include:

- Up to 295 apartment units; and,
- Up to 11,500 square feet of leasable retail floor space.

Existing Development


Currently the site is developed with two buildings at 6009 and 6017 Quinpool Road that combine for approximately 52,900 square feet of office space. Since this office space will no longer be operational with redevelopment, trips currently generated by the existing site have been considered as credit for the purposes of estimating the additional vehicle trips generated by the redeveloped site.

Estimation of Total Site Generated Trips

The number of trips that will be generated by the proposed multi-use development has been estimated using rates published in *Trip Generation*, 10th Edition (Institute of Transportation Engineers, Washington, 2017). Trip generation estimates are summarized in Table 1.

A 25% reduction of vehicle trips was used for this development and accounts for:

- Onsite Synergies- Since this proposed development includes up to 295 apartment units and up to 11,500 SF of retail space, it is probable that there will be many onsite trips between the complementing land uses.
- *Pedestrian Access* With good nearby pedestrian infrastructure, the site is located close to Quinpool Centre, Halifax Common, and the QE2 (all within 5-minute walk). The site is a 15-minute walk to the Scotiabank Centre, Public Gardens, and Spring Garden Road.
- *Cycling* The planned Allan Street, Vernon Street, and considered Welsford Street Bikeway will connect to the existing Windsor Street Bike lane and are all located within 250 metres of the site. Provision of onsite bicycle parking is planned.
- Public Transit- With several well served transit routes traveling past the site on Robie Street and Quinpool Road, it is anticipated that the modal share for transit users will be high. Robie Street is designated as a Transit Priority Corridor in the IMP and HRM is planning to implement corridor level transit priority measures.

Source: Walkscore.com

The proposed development is estimated to generate:

- 103 two-way trips (29 entering and 74 exiting) during the AM peak hour; and,
- 150 two-way trips (86 entering and 64 exiting) during the PM peak hour

When estimated trips generated by the existing development and reduction for non-auto modes are considered, the proposed development is estimated to generate:

- 45 new two-way vehicle trips (-6 entering and 51 exiting) during the AM peak hour; and,
- 78 two-way trips (58 entering and 20 exiting) during the PM peak hour.

Table 1 - Trip Generation Estimates

				ation Est			Trips Ge	nerated ³	
Land Use	Units ²	AM	Peak	PM	Peak	AM	Peak		Peak
		In	Out	In	Out	In	Out	In	Out
Trip Generation Estimates for the	Proposed	l Develop	ment						
Multifamily Housing (High-Rise) ¹ (Land Use 222)	295	0.07	0.24	0.22	0.14	22	70	65	41
Retail ¹ (ITE Usage 820)	11.5	0.58	0.36	1.83	1.98	7	4	21	23
Total Es	stimated 7	Trips Gen	erated by	the Prop	osed Site	29	74	86	64
25% Trip Reduction to Acco	unt for In	ternal Site	Trips and	d Non-Aut	o Modes ⁵	-7	-19	-22	-16
New Vehicle T	rips Gene	erated By	The Prop	osed Dev	elopment	22	55	64	48
Trip Generation Estimates for the	Existing	Developn	ent						
General Office Building ^{1,4} (6017 Quinpool) (ITE 710)	8.5	0.71	0.12	0.15	0.72	6	1	1	6
General Office Building ^{1,4} (6009 Quinpool) (ITE 710)	44.3	0.71	0.12	0.15	0.72	32	5	7	32
Total 1	Estimated	Trips Ge	nerated b	y the Exis	sting Site	38	6	8	38
25% Trip Reduction to Acco	unt for In	ternal Site	Trips and	d Non-Aut	o Modes ⁵	-10	-2	-2	-10
New Vehicle	Trips Ge	nerated B	y The Exi	sting Dev	elopment	28	4	6	28
Net New Vehicle T	rips Gene	erated By	The Prop	osed Dev	elopment	-6	51	58	20

Notes: 1. Trip generation rates for the associated Land Use from *Trip Generation*, 10 th *Edition* (Institute of Transportation Engineers, Washington, 2017).

- 2. Units are 'number of units' for residential, '1000 Sq. Ft Gross Leasable Area' for Retail, '1000 Sq. Ft Gross Floor Area for Office.
- 3. Vehicles per hour for peak hours.
- 4. General Office Rates for the Existing Development use rates for 'Dense Multi-Use Urban' (pages 21, 22 of the land use group) to estimate the site's trips.
- 5. Trip generation estimates have been reduced by 25% to account for trips between complementing land uses within the development as well as non-auto modes. This considers the *Integrated Mobility Plan* (HRM 2017) target of at least 40% non-auto for the Regional Centre.

Trip Distribution and Assignment New vehicle trips generated by the proposed development were assigned to the roadway network based on counted volumes and local knowledge of the area considering major trip origins and destinations in the region. In the trip distribution, consideration is given to the expected high rate of non-vehicle trips from / to the south and east, due to the shorter distances and higher anticipated active transportation and transit mode shares.

•	North	45%	(North end Halifax, Dartmouth / Burnside / Bedford / Fall River / Airport via MacKay Bridge, Dartmouth via Macdonald Bridge, etc.)
•	East	10%	(Downtown Halifax, etc.)
•	South	15%	(Dalhousie and St. Mary's, Hospitals, etc.)
•	West	30%	(Halifax Shopping Centre, Bayers Lake, Highway 102, Armdale roundabout, etc.)

Estimated trips generated by the proposed development have been assigned to Study Area intersections and are shown diagrammatically in Figure A-2, Appendix.

Projected 2021 Peak Hour Traffic Volumes that Include Site Generated Trips

Trips generated by the proposed development (Figure A-2, Appendix) have been added to the projected 2021 AM and PM background volumes (Figure A-1, Appendix) to provide projected 2021 AM and PM peak hourly volumes that include site generated trips, illustrated diagrammatically in Figure A-3, Appendix.

4 INTERSECTION OPERATIONAL ANALYSIS

Intersection Analysis was completed to estimate how the intersections may be expected to operate without and with site generated trips.

Intersection Capacity Analysis Results Synchro 10.0 software has been used for performance evaluation of Study Area intersections for 2021 AM and PM peak hour volumes without and with site development. Analysis results are included in the Appendix and summarized in Tables 2 to 6 below. It is understood that HRM is considering the removal of the southbound right turn channel from Robie Street to Quinpool Road. All scenarios include the removal of this channel at HRM's request.

Robie Street at Quinpool Road (Signalized, Table 2) — While this intersection currently operates near capacity during the peak periods, the trips generated by redevelopment are not expected to have a major impact on the performance of the overall intersection or of the individual movements.

Study Area STOP controlled intersections:

- Robie Street at Welsford Street (Table 3)
- Quinpool at Windsor Street (Table 4)
- Windsor Street at Welsford Street (Table 5)
- Windsor Street at Site Driveway (Table 6)

Overall performance at the STOP controlled intersections is expected to be satisfactory without and with the addition of site generated trips. All movements are expected to operate within HRM acceptable limits.

Table 2 -Intersection Capacity Analysis for Robie Street at Quinpool Road

Intersection				lay (sec/veh)	• •	` ,	•			Overall Intersection
Criteria	C	uinpool Roa	ıd	Cogswell Street		Bell Street	meraculon			
	EB-T	EB-R	EB-R2	WB-TR	NB-L	NB-TR	SB-L	SB-TR	NW-LR	Delay
			AM Pe	ak Hour witl	hout Site De	evelopment	(Page A-8)			
Delay	70.7	53.0	7.8	42.9	73.2	49.0	90.3	82.8	80.2	
v/c	0.82	0.90	0.48	0.16	0.72	0.54	0.94	0.99	0.88	62.8
Queue	144.2	245.3	37.7	23.9	62.0	79.2	113.4	167.4	92.6	
			AM P	eak Hour wi	th Site Deve	elopment (Pa	age A-16)			
Delay	70.7	53.0	7.8	42.9	72.9	49.0	94.8	82.2	79.9	
v/c	0.82	0.90	0.48	0.16	0.72	0.54	0.96	0.99	0.88	63.0
Queue	144.2	245.3	37.7	23.9	61.7	79.2	117.8	167.1	92.3	
			PM Pea	ak Hour with	out Site De	velopment (Page A-12)			
Delay	62.9	26.6	3.5	60.4	77.0	62.3	85.7	50.1	89.0	
v/c	0.59	0.42	0.21	0.64	0.88	0.85	0.83	0.59	1.01	63.9
Queue	88.8	73.5	11.4	83.4	106.4	144.7	83.9	88.4	172.9	
			PMP	eak Hour wi	th Site Deve	elopment (Pa	age A-21)			
Delay	62.9	26.6	3.5	60.4	83.6	62.3	87.4	50.2	89.8	
v/c	0.59	0.42	0.21	0.64	0.91	0.85	0.84	0.60	1.01	64.8
Queue	88.8	73.5	11.4	84.0	115.7	144.7	86.5	89.7	173.6	

Table 3 - Intersection Capacity Analysis for Robie Street at Welsford Street

Intersection		Control Delay (sec/veh), Level of Service (LOS), v/c Ratio, and 95 th %ile Queue (m) by Intersection Movement											
Criteria	Welsford Street	Robie S	Street	Intersection									
	EB-R	NB-T	SB-TR	Delay									
·	AM Pe	ak Hour without Site Development (F	Page A-9)										
Delay	12.1	0.0	0.0										
v/c	0.24	0.15	0.19	1.2									
Queue	7.3	0.0	0.0										
	AM P	eak Hour with Site Development (Pa	ge A-17)										
Delay	12.3	0.0	0.0										
v/c	0.26	0.15	0.19	1.3									
Queue	7.9	0.0	0.0										
	PM Pea	ak Hour without Site Development (F	Page A-13)										
Delay	10.1	0.0	0.0										
v/c	0.11	0.28	0.12	0.6									
Queue	2.9	0.0	0.0										
	PMP	eak Hour with Site Development (Pa	ge A-22)										
Delay	10.1	0.0	0.0										
v/c	0.12	0.28	0.12	0.6									
Queue	3.2	0.0	0.0										

Table 4 –Intersection Capacity Analysis for Quinpool Road at Windsor Street

Intersection		Control Delay (sec/veh), Leve and 95 th %ile Queue (m) i			Overall Intersection
Criteria		Quinpool Road		Windsor Street	
	EB-T	WB-T	WB-R	SB-R	Delay
·		AM Peak Hour without S	ite Development (Page A-1	0)	
Delay	0.0	0.0	0.0	10.7	
v/c	0.39	0.13	0.11	0.20	0.8
Queue	0.0	0.0	0.0	5.6	
		AM Peak Hour with Site	e Development (Page A-18)		·
Delay	0.0	0.0	0.0	10.8	
v/c	0.39	0.13	0.11	0.22	0.9
Queue	0.0	0.0	0.0	6.2	
		PM Peak Hour without S	ite Development (Page A-1	4)	
Delay	0.0	0.0	0.0	11.1	
v/c	0.19	0.28	0.27	0.14	0.5
Queue	0.0	0.0	0.0	3.7	
		PM Peak Hour with Site	e Development (Page A-23)		
Delay	0.0	0.0	0.0	11.2	
v/c	0.19	0.28	0.28	0.16	0.6
Queue	0.0	0.0	0.0	4.3	

Table 5 - Intersection Capacity Analysis for Windsor Street at Welsford Street

Intersection		y (sec/veh), Level of Service (LOS), %ile Queue (m) by Intersection Move	The state of the s	Overall Intersection
Criteria	Welsford Street	Windsor	mersection	
	WB-LR	NB-TR	SB-LT	Delay
	AM Peak	Hour without Site Development (F	Page A-11)	•
Delay	10.5	0.0	5.1	
v/c	0.05	0.11	0.27	3.9
Queue	1.3	0.0	4.1	
	AM Pea	ak Hour with Site Development (Pa	ge A-19)	
Delay	10.8	0.0	5.2	
v/c	0.06	0.13	0.29	3.7
Queue	1.4	0.0	4.3	
	PM Peak	Hour without Site Development (F	Page A-15)	
Delay	12.3	0.0	4.0	
v/c	0.08	0.28	0.18	1.8
Queue	2.0	0.0	1.9	
	PM Pea	ak Hour with Site Development (Pa	ge A-24)	
Delay	12.6	0.0	3.5	
v/c	0.07	0.30	0.23	1.6
Queue	1.6	0.0	1.9	

Table 6 - Intersection Capacity Analysis for Windsor Street at Site Driveway

Intersection		lay (sec/veh), Level of Service (LOS) th %ile Queue (m) by Intersection Mov		Overall Intersection
Criteria	Site Access	Windso	r Street	intorcootion
	WB-LR	NB-TR	SB-LT	Delay
	AM P	eak Hour with Site Development (Pa	age A-20)	
Delay	9.9	0.0	0.8	
v/c	0.08	0.11	0.13	1.7
Queue	1.9	0.0	0.3	
	PMP	eak Hour with Site Development (Pa	age A-25)	
Delay	12.3	0.0	3.0	
v/c	0.10	0.28	0.13	1.6
Queue	2.4	0.0	1.0	

5 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

5.1 SUMMARY

Description of the Proposed Development

- 1. Plans are being prepared for the development of Willow Tree Tower, a multiuse development at the northwest corner of the Robie Street at Quinpool Road intersection in Halifax, NS. The development is planned to include up to:
 - 295 residential units; and,
 - 11,500 square feet of leasable retail floor space.

Completion of the development is anticipated by 2021.

Proposed Site Access

2. Vehicular access to the about 94 underground parking spaces within the development will be a single driveway onto Windsor Street.

Study Area Roads

3. *Robie Street*, just to the east of the site is a 6-lane arterial roadway in this area. Robie Street is an important north-south corridor on the Halifax Peninsula and serves as a key link for several bus routes. Robie Street is identified as a Transit Priority Corridor.

Quinpool Road, just to the south of the site is a 4-lane undivided arterial roadway with concrete sidewalks and time restricted parking on both sides.

Windsor Street, just to the west of the site is a 2-lane major collector roadway with concrete sidewalks and restricted parking on the west side and permitted parking on the east side. The Windsor Street bicycle lane begins just to the north of the site area.

Traffic Volumes

- 4. February 2019 turning movement counts were completed at the Robie Street intersections with Quinpool Road and Welsford Street as well as Windsor Street at Parker Street. These data supplement HRM collected turning movement counts at the Winsor at Welsford Street intersection.
- 5. Based on a review of the available historical traffic data it was concluded that traffic growth will not be applied to the observed trips to project 2021 traffic volumes for the study.

Estimation of Site Generated Trips

6. Trip generation estimates, were prepared using rates published in *Trip Generation*, 10th Edition (Institute of Transportation Engineers, Washington, 2017).

The proposed development is estimated to generate:

- 103 two-way trips (29 entering and 74 exiting) during the AM peak hour; and,
- 150 two-way trips (86 entering and 64 exiting) during the PM peak hour.

Estimation of Site Generated Trips (Continued)

When reductions to account for existing development trips and non-auto modes are considered, the proposed development is estimated to generate:

- 45 new two-way vehicle trips (-6 entering and 51 exiting) during the AM peak hour; and,
- 78 new two-way trips (58 entering and 20 exiting) during the PM peak hour.

Trip Distribution and Assignment

7. New vehicle trips generated by the redevelopment have been assigned to study area streets and intersections based on counted volumes and consideration of major trip origins and destinations in the region. Trips were distributed to the north (45%), east (10%), south (15%), and west (30%).

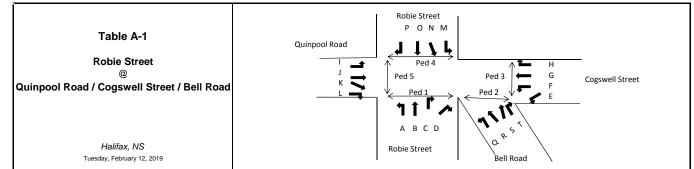
Summary – Intersection Capacity Analysis

- 8. While the Robie at Quinpool intersection currently operates near capacity during the peak periods, the trips generated by redevelopment are not expected to have a major impact on the performance of the overall intersection or of the individual movements.
- 9. The level of performance at the study area STOP controlled intersections is expected to remain within HRM acceptable limits without and with the addition of site generated trips.

5.2 RECOMMENDATIONS

10. Access opportunities should be reviewed to provide a two-way site driveway onto Windsor Street. This could include consideration of the potential realignment of the Parker Street connection from Windsor Street to reduce the asphalt area and tighten the intersection. 11. Continue to plan for added bicycle connections through the area including on Welsford Street. 12. Continue to plan for provision of onsite bicycle parking to promote bicycle trips as an alternate travel mode. Public Transit 13. Continue to plan for transit priority in this area and promote public transit as an alternate travel mode.

5.3 CONCLUSIONS


Impacts to Vehicular Traffic	14.	With implementation of recommendations above, site generated trips are not expected to have a significant impact to levels of performance on adjacent intersections or to the regional road network.
Impacts to Bicycle Connections	15.	The site is planned to include onsite bicycle parking and it is expected that several development trips will be made by bicycle.
	16.	With minimal additional traffic anticipated to use Welsford Street, the redevelopment is not expected to have an impact on the options being considered by HRM for the area.
Impact to Transit	17.	The redevelopment of the site is not expected to have an impact on the transit priority corridor recommendations from the recent planning study completed for the area (WSP 2018).

APPENDIX

TRAFFIC VOLUME DATA AND INTERSECTION PERFORMANCE ANALYSIS

Appendix A - Traffic Volume Data Page A-1

									AM P	eak Per	iod Vo	lume D	ata									
			Robie	Street			Cogswe	ell Street			Quinpo	ol Road			Robie	Street			Bell	Road		Total
Ti	me	No	rthboun	d Appro	ach	We	estbound	d Approa	ach	Ea	stbound	d Approa	ach	So	uthboun	d Appro	ach	Northwestbound Approach				Vehicles
		Α	В	С	D	Е	F	G	Н	ı	J	K	L	M	N	0	Р	Q	R	S	Т	Vernoies
07:00	07:15	34	72	9	2	0	0	18	2	0	82	123	39	0	52	116	2	0	36	36	0	623
07:15	07:30	31	91	2	0	0	0	20	1	0	68	131	58	4	64	161	2	0	25	15	1	674
07:30	07:45	21	85	3	3	0	0	19	1	0	63	150	62	1	61	194	5	0	52	32	0	752
07:45	08:00	27	87	2	2	0	0	32	2	1	71	136	79	5	63	220	3	0	48	20	0	798
08:00	08:15	28	88	3	6	0	0	22	5	0	67	162	92	6	57	189	9	0	62	30	0	826
08:15	08:30	36	83	5	1	0	0	27	2	0	74	137	78	4	63	169	3	0	52	22	1	757
08:30	08:45	38	98	9	2	0	0	34	4	0	90	132	83	7	57	161	12	0	75	28	0	830
08:45	09:00	50	110	4	4	0	0	22	1	0	77	132	83	5	51	158	14	0	80	28	0	819
AM Pea	ık Hour	152	379	21	13	0	0	105	12	0	308	563	336	22	228	677	38	0	269	108	1	3232
07:00	08:00	113	335	16	7	0	0	89	6	1	284	540	238	10	240	691	12	0	161	103	1	2847
08:00	09:00	152	379	21	13	0	0	105	12	0	308	563	336	22	228	677	38	0	269	108	1	3232

									PM P	eak Per	iod Vo	lume D	ata									
			Robie	Street			Cogswe	ell Street	i		Quinpo	ol Road			Robie	Street			Bell I	Road		Tetal
Ti	me	No	rthboun	d Appro	ach	W	estboun	d Appro	ach	Ea	astbound	d Approa	ach	So	uthboun	d Appro	ach	North	nwestbou	Total Vehicles		
		Α	В	С	D	Е	F	G	Н	- 1	J	K	L	М	Ν	0	Р	Q	R	S	Т	verilcies
16:00	16:15	60	192	7	2	0	0	90	0	0	57	62	27	2	43	87	18	0	159	42	1	849
16:15	16:30	62	188	8	3	0	0	105	4	0	56	57	33	2	32	103	18	0	162	48	0	881
16:30	16:45	70	185	8	1	0	0	104	6	0	43	64	31	3	35	102	13	0	157	43	0	865
16:45	17:00	66	145	7	4	0	0	91	1	0	54	57	39	4	48	97	4	0	139	44	0	800
17:00	17:15	65	162	8	4	0	0	92	5	0	46	68	39	4	51	116	12	0	139	43	0	854
17:15	17:30	67	180	11	5	0	0	103	2	0	59	65	36	2	47	89	11	0	130	44	0	851
17:30	17:45	62	165	11	2	0	0	94	5	0	50	63	37	3	40	106	10	0	130	32	0	810
17:45	18:00	53	132	13	5	0	0	66	4	0	60	73	34	3	53	92	10	1	97	34	1	731
PM Pea	ak Hour	263	680	31	12	0	0	392	16	0	199	246	142	13	166	418	47	0	597	178	0	3400
16:00	17:00	258	710	30	10	0	0	390	11	0	210	240	130	11	158	389	53	0	617	177	1	3395
17:00	18:00	247	639	43	16	0	0	355	16	0	215	269	146	12	191	403	43	1	496	153	1	3246

^{*} Count completed by WSP

WSP Canada Inc. February 2019

Robie Street I H Table A-2 Welsford Street **Robie Street** (a) Ped 3 **Welsford Street** Ped 4 Ped 1 Halifax, NS В Tuesday, February 12, 2019 **AM Peak Period Volume Data** Robie Street Robie Street Welsford Street Total Time Northbound Approach Southbound Approach Eastbound Approach Vehicles В Η 07:15 07:00 110 151 19 281 07:15 07:30 107 205 4 26 342 07:30 07:45 118 224 37 380 40 07:45 08:00 110 251 402 08:00 08:15 123 223 3 38 387 08:15 08:30 107 204 2 35 348 08:30 08:45 130 200 3 37 370 08:45 09:00 139 189 2 39 369 458 902 7 **AM Peak Hour** 150 1517 445 122 07:00 08:00 831 7 1405 08:00 09:00 499 816 10 149 1474 Ped 1 Ped 3 Ped 4 Total Peds 07:00 08:00 63 24 88 08:00 09:00 0 102 26 128 **PM Peak Period Volume Data** Robie Street Robie Street Welsford Street Total Time Northbound Approach Southbound Approach Eastbound Approach Vehicles Α Η 234 12 16:00 16:15 138 390 6 240 16:30 16:15 134 1 21 396 16:30 16:45 234 140 2 13 389 16:45 17:00 190 0 21 132 343 17:00 17:15 210 155 2 28 395 17:15 17:30 226 128 5 21 380 17:30 202 140 2 19 363 17:45 17:45 18:00 170 129 3 29 331 PM Peak Hour 874 561 5 83 1523 898 16:00 17:00 544 9 67 1518 17:00 18:00 808 552 97 1469 12 **Total Peds** Ped 1 Ped 3 Ped 4 16:00 32 114 17:00 0 82 17:00 18:00 0 118 45 163

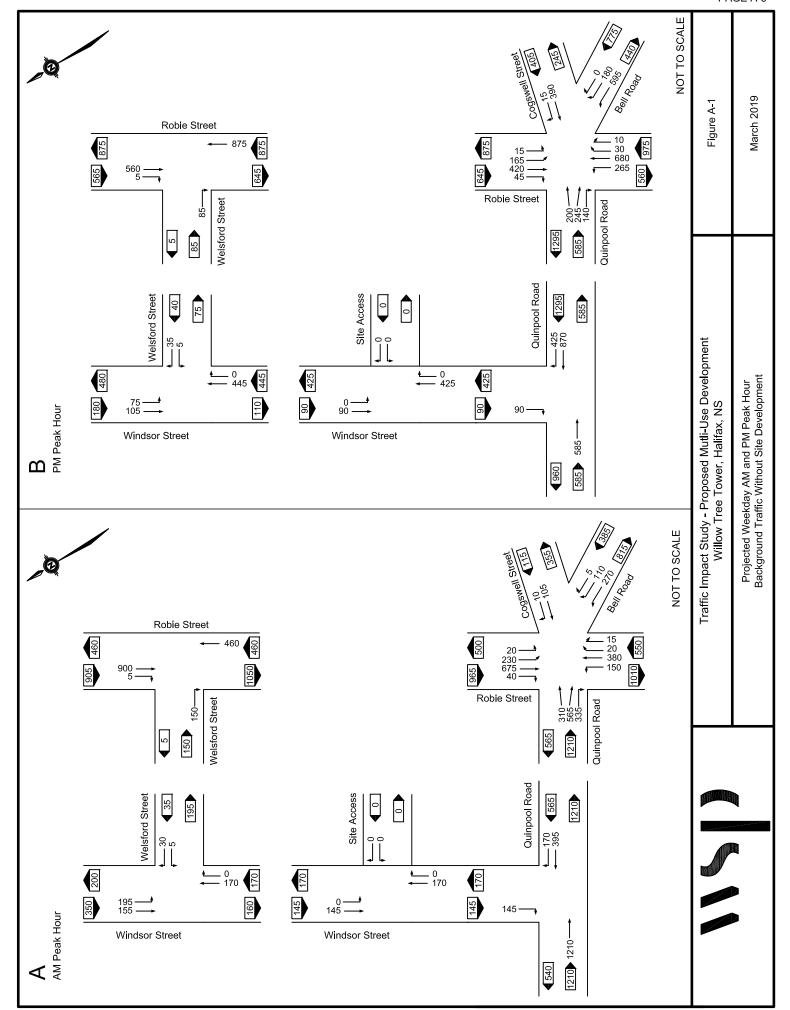
WSP Canada Inc. February 2019

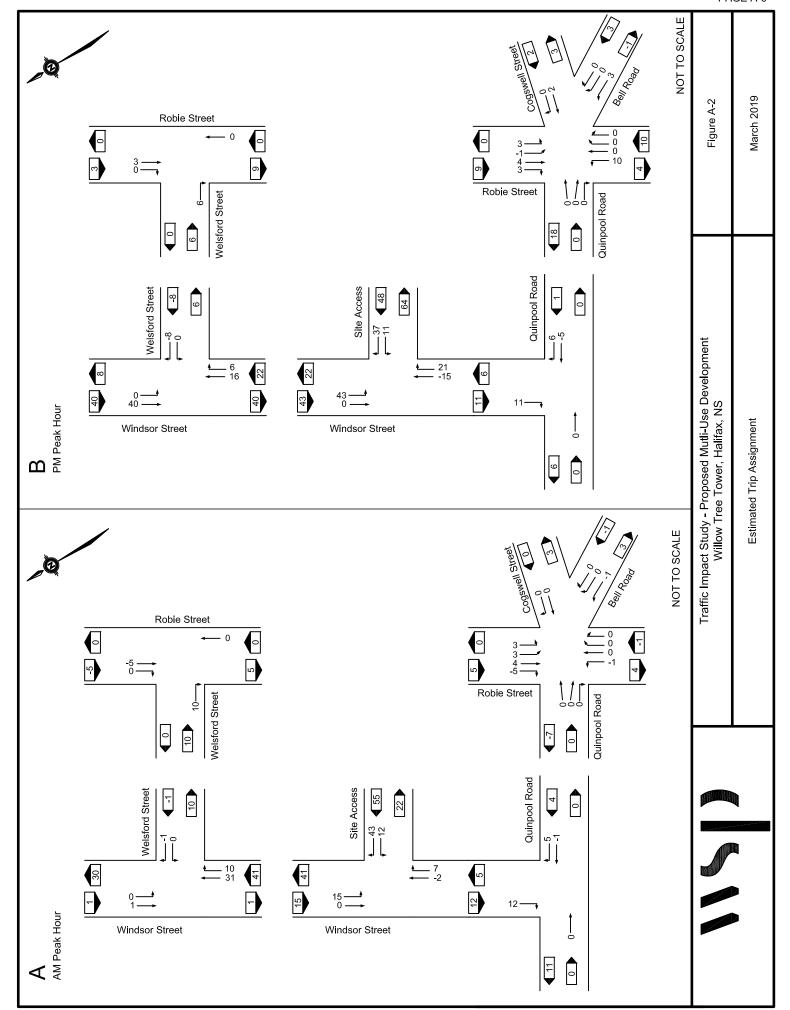
^{*} Count completed by WSP

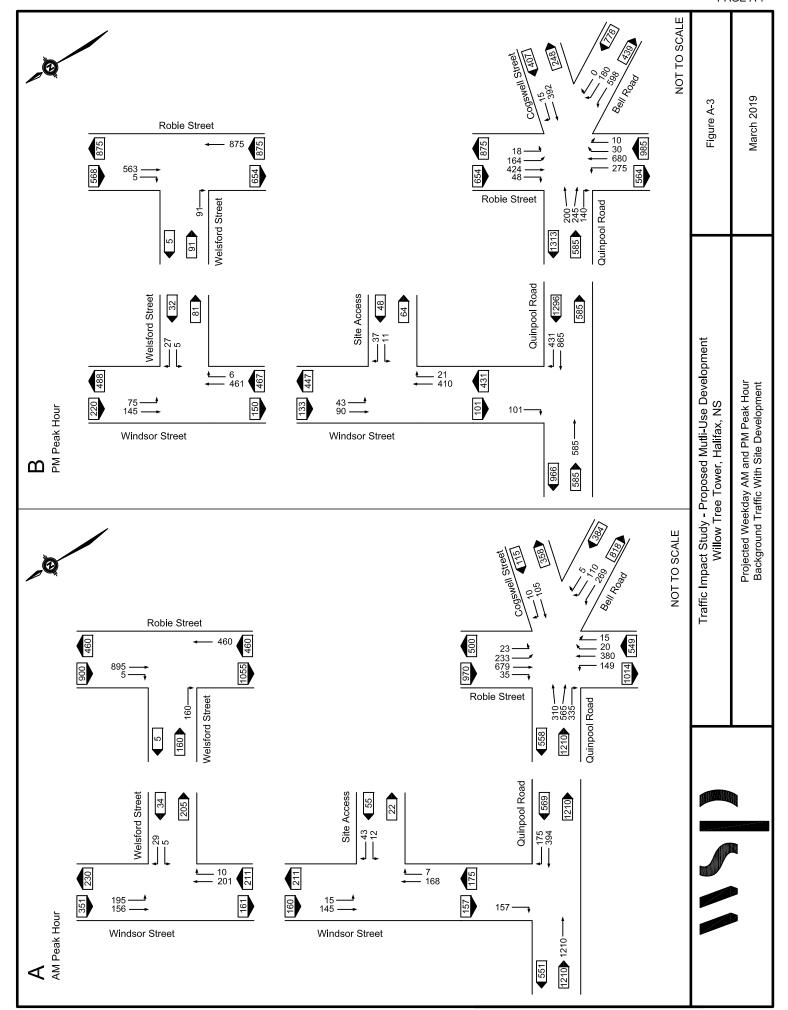
Windsor Street H G Table A-3 **Windsor Street** Welsford Street Ped 3 @ F Ped 2 **Welsford Street** D Ped 1 ВС Halifax, NS Thursday, June 1, 2017 **AM Peak Period Volume Data** Windsor Street Welsford Street Windsor Street Total Time Northbound Approach Westbound Approach Southbound Approach Vehicles D G В С Η 07:00 07:15 07:30 07:15 07:30 07:45 07:45 08:00 08:00 08:15 08:15 08:30 08:30 08:45 08:45 09:00 **AM Peak Hour** 07:00 08:00 08:00 09:00 Ped 1 Ped 2 Ped 3 **Total Peds** 07:00 08:00 08:00 09:00 **PM Peak Period Volume Data** Windsor Street Welsford Street Windsor Street Total Time Northbound Approach Westbound Approach Southbound Approach Vehicles В С D F G Н 16:00 16:15 16:15 16:30 16:30 16:45 16:45 17:00 17:00 17:15 17:15 17:30 17:45 17:30 18:00 17:45 **PM Peak Hour** 16:00 17:00 17:00 18:00 Ped 1 Ped 2 Ped 3 **Total Peds** 16:00 17:00 17:00 18:00

WSP Canada Inc. February 2019

Count completed by HRM Traffic Management


Windsor Street H G Table A-4 **Windsor Street** Parker Street Ped 3 @ F Ped 2 **Parker Street** D Ped 1 Halifax. NS ВС PM: Tuesday, February 26, 2019 AM: Wednesday, February 27, 2019 **AM Peak Period Volume Data** Windsor Street Parker Street Windsor Street Total Time Northbound Approach Westbound Approach Southbound Approach Vehicles D В С G Η 07:00 07:15 07:30 07:15 07:30 07:45 07:45 08:00 08:00 08:15 08:15 08:30 08:30 08:45 08:45 09:00 **AM Peak Hour** 07:00 08:00 08:00 09:00 Ped 1 Ped 2 Ped 3 **Total Peds** 07:00 08:00 08:00 09:00 **PM Peak Period Volume Data** Windsor Street Parker Street Windsor Street Total Time Northbound Approach Westbound Approach Southbound Approach Vehicles В С D F G Н 16:00 16:15 16:15 16:30 16:30 16:45 16:45 17:00 17:00 17:15 17:15 17:30 17:45 17:30 18:00 17:45 **PM Peak Hour** 16:00 17:00 17:00 18:00 Ped 1 Ped 2 Ped 3 **Total Peds** 16:00 17:00


18:00


17:00

WSP Canada Inc. February 2019

^{*} Count completed by WSP

1: Robie Street & Bell Road & Quinpool Road/Cogswell Street

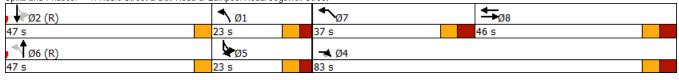
	→	-	•	←	4	†	>	Ų	↓	*
Lane Group	EBT	EBR	EBR2	WBT	NBL	NBT	SBL2	SBL	SBT	NWL
Lane Configurations	†	7	7	∱ β	7	ħβ		Ä	∱ ⊅	AA
Traffic Volume (vph)	310	565	335	105	150	380	20	230	675	270
Future Volume (vph)	310	565	335	105	150	380	20	230	675	270
Lane Group Flow (vph)	337	614	364	125	163	451	0	272	777	418
Turn Type	NA	custom	custom	NA	pm+pt	NA	pm+pt	pm+pt	NA	Prot
Protected Phases	8	4		8	· · · 1	6	5	5	2	7
Permitted Phases			4		6		2	2		
Minimum Split (s)	36.0	43.0	43.0	36.0	14.0	46.0	14.0	14.0	46.0	37.0
Total Split (s)	46.0	83.0	83.0	46.0	23.0	47.0	23.0	23.0	47.0	37.0
Total Split (%)	30.1%	54.2%	54.2%	30.1%	15.0%	30.7%	15.0%	15.0%	30.7%	24.2%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	4.0	4.0	4.0	4.0	3.0	0.0	3.0	3.0	0.0	4.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	-1.0
Total Lost Time (s)	7.0	7.0	7.0	7.0	6.0	3.0		6.0	3.0	7.0
Lead/Lag					Lag	Lead	Lag	Lag	Lead	
Lead-Lag Optimize?					9		9	9		
Act Effct Green (s)	39.0	76.0	76.0	39.0	58.0	44.0		58.0	44.0	30.0
Actuated g/C Ratio	0.25	0.50	0.50	0.25	0.38	0.29		0.38	0.29	0.20
v/c Ratio	0.82	0.90	0.48	0.16	0.72	0.54		0.94	0.99	0.88
Control Delay	70.7	53.0	7.8	42.9	73.2	49.0		90.3	82.8	80.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	70.7	53.0	7.8	42.9	73.2	49.0		90.3	82.8	80.2
LOS	E	D	A	D	E	D		F	F	F
Approach Delay	45.0	5		42.9	_	55.4		•	84.7	80.2
Approach LOS	D			D		55.4 E			F	F
Queue Length 50th (m)	97.1	166.5	13.0	14.8	31.9	61.2		58.1	123.7	64.3
Queue Length 95th (m)	#144.2	#245.3	37.7	23.9	#62.0	79.2		#113.4	#167.4	#92.6
Internal Link Dist (m)	61.0	" Z 10.0	07.7	320.8	# 0Z.0	379.4		,, 1 10. T	173.2	278.4
Turn Bay Length (m)	01.0	70.0	70.0	020.0		0,,,,			170.2	270.1
Base Capacity (vph)	411	682	756	762	226	828		290	786	474
Starvation Cap Reductn	0	002	0	0	0	020		0	0	0
Spillback Cap Reductn	0	0	0	0	0	0		0	0	0
Storage Cap Reductn	0	0	0	0	0	0		0	0	0
Reduced v/c Ratio	0.82	0.90	0.48	0.16	0.72	0.54		0.94	0.99	0.88
Intersection Summary	0.02	0.70	0.40	0.10	0.72	0.5-1		U. 7-T	0.77	0.00
intersection Summary										

Cycle Length: 153

Actuated Cycle Length: 153

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 135 Control Type: Pretimed Maximum v/c Ratio: 0.99 Intersection Signal Delay: 62.8 Intersection Capacity Utilization 117.1%


Intersection LOS: E ICU Level of Service H

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Robie Street & Bell Road & Quinpool Road/Cogswell Street

WSP Canada Inc Synchro 10 Report

Movement EBL EBR NBL NBT SBR Lane Configurations Image: Configuration of the co
Traffic Volume (veh/h) 0 150 0 460 900 5 Future Volume (Veh/h) 0 150 0 460 900 5 Sign Control Stop Free Free Free Grade 0% 0% 3% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 0 163 0 500 978 5 Pedestrians
Future Volume (Veh/h) 0 150 0 460 900 5 Sign Control Stop Free Free Free Grade 0% 0% 3% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 0 163 0 500 978 5 Pedestrians
Sign Control Stop Free Free Grade 0% 0% 3% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 0 163 0 500 978 5 Pedestrians 5 5 6 6 6 6 6 6 6 6 6 6 6 7 6 7 6 7 6 7 6 7 7 6 7
Grade 0% 0% 3% Peak Hour Factor 0.92
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 0 163 0 500 978 5 Pedestrians 5
Hourly flow rate (vph) 0 163 0 500 978 5 Pedestrians
Pedestrians
Lane Width (m)
Walking Speed (m/s)
Percent Blockage
Right turn flare (veh)
Median type None None
Median storage veh)
Upstream signal (m) 197
pX, platoon unblocked 0.91
vC, conflicting volume 1230 328 983
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 1054 328 983
tC, single (s) 6.8 6.9 4.1
tC, 2 stage (s)
tF (s) 3.5 3.3 2.2
p0 queue free % 100 76 100
cM capacity (veh/h) 201 667 698
Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 SB 3
Volume Total 163 250 250 391 391 201
Volume Left 0 0 0 0 0 0
Volume Right 163 0 0 0 5
cSH 667 1700 1700 1700 1700 1700
Volume to Capacity 0.24 0.15 0.15 0.23 0.23 0.12
Queue Length 95th (m) 7.3 0.0 0.0 0.0 0.0 0.0
Control Delay (s) 12.1 0.0 0.0 0.0 0.0 0.0
Lane LOS B
Approach Delay (s) 12.1 0.0 0.0
Approach LOS B
Intersection Summary
Average Delay 1.2
Intersection Capacity Utilization 36.6% ICU Level of Service
Analysis Period (min) 15

3: Quinpool/Quinpool Road & Windsor Street

3. Quiripool/Quiripo	oi i toac	1 0 771	ilasoi (Jucci			-
	٦	→	←	•	\	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		^	^	7		7	
Traffic Volume (veh/h)	0	1210	395	170	0	145	
Future Volume (Veh/h)	0	1210	395	170	0	145	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	1315	429	185	0	158	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)			85				
pX, platoon unblocked			00				
vC, conflicting volume	614				1086	214	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	614				1086	214	
tC, single (s)	4.1				6.8	6.9	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	100				100	80	
cM capacity (veh/h)	961				211	790	
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	SB 1	
Volume Total	658	658	214	214	185	158	
Volume Left	0	0	0	0	0	0	
Volume Right	0	0	0	0	185	158	
cSH	1700	1700	1700	1700	1700	790	
Volume to Capacity	0.39	0.39	0.13	0.13	0.11	0.20	
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	5.6	
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	10.7	
Lane LOS	0.0	0.0	0.0	0.0	0.0	В	
Approach Delay (s)	0.0		0.0			10.7	
Approach LOS						В	
Intersection Summary							
Average Delay			0.8				
Intersection Capacity Utilization			40.7%	ICI	U Level of S	ervice	Α
Analysis Period (min)			15				

	•	•	†	<i>></i>	\	+
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control Grade	5 5 Stop 0%	30 30	170 170 170 Free 0%	0 0	195 195	4 155 155 Free 0%
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage	0.92 5	0.92 33	0.92 185	0.92	0.92 212	0.92 168
Right turn flare (veh) Median type Median storage veh) Upstream signal (m) pX, platoon unblocked			None			None
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	777	185			185	
vCu, unblocked vol tC, single (s) tC, 2 stage (s)	777 6.4	185 6.2			185 4.1	
tF (s) p0 queue free % cM capacity (veh/h)	3.5 98 310	3.3 96 857			2.2 85 1390	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total Volume Left Volume Right cSH Volume to Capacity	38 5 33 695 0.05	185 0 0 1700 0.11	380 212 0 1390 0.15			
Queue Length 95th (m) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	1.3 10.5 B 10.5 B	0.0 0.0 0.0	4.1 5.1 A 5.1			
Intersection Summary Average Delay Intersection Capacity Utilization Analysis Period (min)			3.9 44.5% 15	ICI	J Level of Se	rvice

PM Peak Hour Future Background

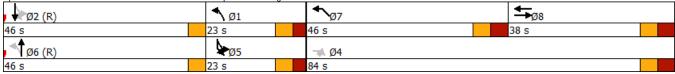
	-	-	•	←	•	†	>	Į,	↓	*
Lane Group	EBT	EBR	EBR2	WBT	NBL	NBT	SBL2	SBL	SBT	NWL
Lane Configurations	†	7	7	↑ ↑	7	∱ β		Ä	↑ ↑	ሻሻ
Traffic Volume (vph)	200	245	140	390	265	680	15	165	420	595
Future Volume (vph)	200	245	140	390	265	680	15	165	420	595
Lane Group Flow (vph)	217	266	152	440	288	783	0	195	506	843
Turn Type	NA	custom	custom	NA	pm+pt	NA	pm+pt	pm+pt	NA	Prot
Protected Phases	8			8	1	6	5	5	2	7
Permitted Phases		4	4		6		2	2		
Minimum Split (s)	36.0	43.0	43.0	36.0	14.0	46.0	14.0	14.0	46.0	37.0
Total Split (s)	38.0	84.0	84.0	38.0	23.0	46.0	23.0	23.0	46.0	46.0
Total Split (%)	24.8%	54.9%	54.9%	24.8%	15.0%	30.1%	15.0%	15.0%	30.1%	30.1%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	4.0	4.0	4.0	4.0	3.0	0.0	3.0	3.0	0.0	4.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	-1.0
Total Lost Time (s)	7.0	7.0	7.0	7.0	6.0	3.0		6.0	3.0	7.0
Lead/Lag					Lag	Lead	Lag	Lag	Lead	
Lead-Lag Optimize?										
Act Effct Green (s)	31.0	77.0	77.0	31.0	57.0	43.0		57.0	43.0	39.0
Actuated g/C Ratio	0.20	0.50	0.50	0.20	0.37	0.28		0.37	0.28	0.25
v/c Ratio	0.59	0.42	0.21	0.64	0.88	0.85		0.83	0.59	1.01
Control Delay	62.9	26.6	3.5	60.4	77.0	62.3		85.7	50.1	89.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	62.9	26.6	3.5	60.4	77.0	62.3		85.7	50.1	89.0
LOS	E	С	Α	E	E	Е		F	D	F
Approach Delay	33.4			60.4		66.2			60.0	89.0
Approach LOS	С			E		E			Е	F
Queue Length 50th (m)	60.4	49.9	0.0	64.8	61.2	119.0		43.1	69.1	~130.7
Queue Length 95th (m)	88.8	73.5	11.4	83.4	#106.6	144.7		#83.9	88.4	#172.9
Internal Link Dist (m)	61.0			229.8		476.3			175.9	271.5
Turn Bay Length (m)		70.0	70.0		200.0					
Base Capacity (vph)	366	631	739	692	329	917		235	856	836
Starvation Cap Reductn	0	0	0	0	0	0		0	0	0
Spillback Cap Reductn	0	0	0	0	0	0		0	0	0
Storage Cap Reductn	0	0	0	0	0	0		0	0	0
Reduced v/c Ratio	0.59	0.42	0.21	0.64	0.88	0.85		0.83	0.59	1.01
Intersection Summary										

Intersection Summary

Cycle Length: 153 Actuated Cycle Length: 153

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 135 Control Type: Pretimed Maximum v/c Ratio: 1.01 Intersection Signal Delay: 63.9 Intersection Capacity Utilization 112.3%


Intersection LOS: E ICU Level of Service H

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Robie Street & Bell Road & Quinpool Road/Cogswell Street

WSP Canada Inc Synchro 10 Report

	•	•	•	†	↓	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		7		† †	ተተ _ጉ		
Traffic Volume (veh/h)	0	85	0	875	560	5	
Future Volume (Veh/h)	0	85	0	875	560	5	
Sign Control	Stop			Free	Free		
Grade	0%			0%	3%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	92	0	951	609	5	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)				200			
pX, platoon unblocked	0.78						
vC, conflicting volume	1087	206	614				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	563	206	614				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	89	100				
cM capacity (veh/h)	358	801	961				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	SB 3	
Volume Total	92	476	476	244	244	127	
Volume Left	0	0	0	0	0	0	
Volume Right	92	0	0	0	0	5	
cSH	801	1700	1700	1700	1700	1700	
Volume to Capacity	0.11	0.28	0.28	0.14	0.14	0.07	
Queue Length 95th (m)	2.9	0.20	0.20	0.0	0.0	0.07	
Control Delay (s)	10.1	0.0	0.0	0.0	0.0	0.0	
Lane LOS	В	0.0	0.0	0.0	0.0	0.0	
Approach Delay (s)	10.1	0.0		0.0			
Approach LOS	В	0.0		0.0			
• •	ט						
Intersection Summary			0.7				
Average Delay			0.6	101	ll aval -f O		
Intersection Capacity Utilization			27.5%	ICI	J Level of S	ervice	
Analysis Period (min)			15				

	•	→	+	•	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		† †	^	7		7
Traffic Volume (veh/h)	0	585	870	425	0	90
Future Volume (Veh/h)	0	585	870	425	0	90
Sign Control	U	Free	Free	723	Stop	70
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	636	946	462	0	98
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
		None	None			
Median storage veh)						
Upstream signal (m)			85			
pX, platoon unblocked	0.92				0.92	0.92
vC, conflicting volume	1408				1264	473
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1266				1109	248
tC, single (s)	4.1				6.8	6.9
	4.1				0.0	0.7
tC, 2 stage (s)	2.2				2.5	2.2
tF (s)	2.2				3.5	3.3
p0 queue free %	100				100	86
cM capacity (veh/h)	500				187	691
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	SB 1
Volume Total	318	318	473	473	462	98
Volume Left	0	0	0	0	0	0
Volume Right	0	0	0	0	462	98
cSH	1700	1700	1700	1700	1700	691
Volume to Capacity	0.19	0.19	0.28	0.28	0.27	0.14
Queue Length 95th (m)	0.0	0.0	0.20	0.20	0.0	3.7
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	11.1
Lane LOS						В
Approach Delay (s)	0.0		0.0			11.1
Approach LOS						В
Intersection Summary						
Average Delay			0.5			
Intersection Capacity Utilization			36.3%	ICI	J Level of S	ervice
Analysis Period (min)			15			

	•	•	†	<i>></i>	/	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control Grade	5 5 Stop 0%	35 35	445 445 Free 0%	0	75 75	105 105 105 Free 0%
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage	0.92 5	0.92 38	0.92 484	0.92	0.92 82	0.92 114
Right turn flare (veh) Median type Median storage veh) Upstream signal (m) pX, platoon unblocked			None			None
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	762	484			484	
vCu, unblocked vol tC, single (s) tC, 2 stage (s)	762 6.4	484 6.2			484 4.1	
tF (s) p0 queue free % cM capacity (veh/h)	3.5 99 345	3.3 93 583			2.2 92 1079	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	43 5 38 539 0.08 2.0 12.3 B	484 0 0 1700 0.28 0.0 0.0	196 82 0 1079 0.08 1.9 4.0 A			
Intersection Summary Average Delay	В		1.8			
Intersection Capacity Utilization Analysis Period (min)			46.4% 15	ICU	J Level of S	ervice

1: Robie Street & Bell Road & Quinpool Road/Cogswell Street

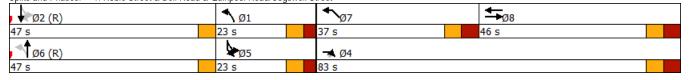
AM Peak Hour Total Traffic with Site Generated Trips

	-		•	←	4	†	\	Ļ	↓	*
Lane Group	EBT	EBR	EBR2	WBT	NBL	NBT	SBL2	SBL	SBT	NWL
Lane Configurations	<u></u>	7	7	∱ β	, J	∱ }		¥	∱ }	ሻሻ
Traffic Volume (vph)	310	565	335	105	149	380	23	233	679	269
Future Volume (vph)	310	565	335	105	149	380	23	233	679	269
Lane Group Flow (vph)	337	614	364	125	162	451	0	278	776	417
Turn Type	NA	custom	custom	NA	pm+pt	NA	pm+pt	pm+pt	NA	Prot
Protected Phases	8	4		8	1	6	5	5	2	7
Permitted Phases			4		6		2	2		
Лinimum Split (s)	36.0	43.0	43.0	36.0	14.0	46.0	14.0	14.0	46.0	37.0
Fotal Split (s)	46.0	83.0	83.0	46.0	23.0	47.0	23.0	23.0	47.0	37.0
Total Split (%)	30.1%	54.2%	54.2%	30.1%	15.0%	30.7%	15.0%	15.0%	30.7%	24.2%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	4.0	4.0	4.0	4.0	3.0	0.0	3.0	3.0	0.0	4.0
ost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	-1.0
otal Lost Time (s)	7.0	7.0	7.0	7.0	6.0	3.0		6.0	3.0	7.0
ead/Lag					Lag	Lead	Lag	Lag	Lead	
ead-Lag Optimize?							· ·	· ·		
ct Effct Green (s)	39.0	76.0	76.0	39.0	58.0	44.0		58.0	44.0	30.0
ctuated g/C Ratio	0.25	0.50	0.50	0.25	0.38	0.29		0.38	0.29	0.20
c Ratio	0.82	0.90	0.48	0.16	0.72	0.54		0.96	0.99	0.88
ontrol Delay	70.7	53.0	7.8	42.9	72.9	49.0		94.8	82.2	79.9
ueue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
otal Delay	70.7	53.0	7.8	42.9	72.9	49.0		94.8	82.2	79.9
OS S	Е	D	Α	D	Е	D		F	F	Ε
pproach Delay	45.0			42.9		55.3			85.6	79.9
pproach LOS	D			D		Ε			F	Ε
Dueue Length 50th (m)	97.1	166.5	13.0	14.8	31.7	61.2		59.7	123.5	64.1
ueue Length 95th (m)	#144.2	#245.3	37.7	23.9	#61.7	79.2		#117.8	#167.1	#92.3
nternal Link Dist (m)	61.0			320.8		379.4			173.2	278.4
urn Bay Length (m)		70.0	70.0							
ase Capacity (vph)	411	682	756	762	226	828		290	787	474
tarvation Cap Reductn	0	0	0	0	0	0		0	0	0
pillback Cap Reductn	0	0	0	0	0	0		0	0	0
torage Cap Reductn	0	0	0	0	0	0		0	0	0
Reduced v/c Ratio	0.82	0.90	0.48	0.16	0.72	0.54		0.96	0.99	0.88
torsaction Summary										

Intersection Summary Cycle Length: 153

Actuated Cycle Length: 153

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green


Natural Cycle: 135 Control Type: Pretimed Maximum v/c Ratio: 0.99 Intersection Signal Delay: 63.0 Intersection Capacity Utilization 117.5%

Intersection LOS: E ICU Level of Service H

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Robie Street & Bell Road & Quinpool Road/Cogswell Street

WSP Canada Inc Synchro 10 Report

April 2019

2: Robie Street & Welsford Street

	۶	•	4	†	↓	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations		7		^	ተተኈ			
Traffic Volume (veh/h)	0	160	0	460	895	5		
Future Volume (Veh/h)	0	160	0	460	895	5		
Sign Control	Stop			Free	Free			
Grade	0%			0%	3%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	0	174	0	500	973	5		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)				197				
pX, platoon unblocked	0.91							
vC, conflicting volume	1226	327	978					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	1048	327	978					
tC, single (s)	6.8	6.9	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	100	74	100					
cM capacity (veh/h)	203	669	701					
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	SB 3		
Volume Total	174	250	250	389	389	200		
Volume Left	0	0	0	0	0	0		
Volume Right	174	0	0	0	0	5		
cSH	669	1700	1700	1700	1700	1700		
Volume to Capacity	0.26	0.15	0.15	0.23	0.23	0.12		
Queue Length 95th (m)	7.9	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	12.3	0.0	0.0	0.0	0.0	0.0		
Lane LOS	В							
Approach Delay (s)	12.3	0.0		0.0				
Approach LOS	В							
Intersection Summary								
Average Delay			1.3					
Intersection Capacity Utilization			37.2%	ICI	J Level of S	ervice	A	
Analysis Period (min)			15					

3: Quinpool/Quinpool Road & Windsor Street

	۶	→	←	•	>	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		† †	† †	7		7
Traffic Volume (veh/h)	0	1210	394	175	0	157
Future Volume (Veh/h)	0	1210	394	175	0	157
Sign Control		Free	Free		Stop	
Grade	0.00	0%	0%	0.00	0%	0.00
Peak Hour Factor	0.92	0.92 1315	0.92 428	0.92 190	0.92	0.92 171
Hourly flow rate (vph) Pedestrians	0	1315	428	190	0	171
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)		None	NOTIC			
Upstream signal (m)			85			
pX, platoon unblocked			00			
vC, conflicting volume	618				1086	214
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	618				1086	214
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	100				100	78
cM capacity (veh/h)	958				211	791
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	SB 1
Volume Total	658	658	214	214	190	171
Volume Left	0	0	0	0	0	0
Volume Right	0	0	0	0	190	171
cSH	1700	1700	1700	1700	1700	791
Volume to Capacity	0.39	0.39	0.13	0.13	0.11	0.22
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	6.2
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	10.8
Lane LOS						В
Approach Delay (s)	0.0		0.0			10.8
Approach LOS						В
Intersection Summary						
Average Delay			0.9			
Intersection Capacity Utilization			40.7%	ICU	J Level of S	ervice
Analysis Period (min)			15			

4: Windsor Street & Welsford Street

	•	•	†	<i>></i>	>	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control	5 5 Stop	29 29	201 201 Free	10 10	195 195	4 156 156 Free
Grade Peak Hour Factor	0% 0.92	0.92	0% 0.92	0.02	0.92	0% 0.92
Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage	5	32	218	0.92 11	212	170
Right turn flare (veh) Median type Median storage veh) Upstream signal (m) pX, platoon unblocked			None			None
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	818	224			229	
vCu, unblocked vol tC, single (s) tC, 2 stage (s)	818 6.4	224 6.2			229 4.1	
tF (s) p0 queue free % cM capacity (veh/h)	3.5 98 291	3.3 96 816			2.2 84 1339	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total Volume Left Volume Right cSH Volume to Capacity	37 5 32 656 0.06	229 0 11 1700 0.13	382 212 0 1339 0.16			
Queue Length 95th (m) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	1.4 10.8 B 10.8 B	0.0 0.0 0.0	4.3 5.2 A 5.2			
Intersection Summary Average Delay Intersection Capacity Utilization Analysis Period (min)			3.7 47.1% 15	ICI	J Level of So	ervice

	•	•	†	<i>></i>	\	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control	12 12 Stop	43 43	168 168 Free	7 7	15 15	145 145 Free
Grade Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s)	0% 0.92 13	0.92 47	0% 0.92 183	0.92 8	0.92 16	0% 0.92 158
Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (m) pX, platoon unblocked			None			None
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	377	187			191	
vCu, unblocked vol tC, single (s) tC, 2 stage (s)	377 6.4	187 6.2			191 4.1	
tF (s) p0 queue free % cM capacity (veh/h)	3.5 98 617	3.3 95 855			2.2 99 1383	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS Intersection Summary	60 13 47 789 0.08 1.9 9.9 A 9.9	191 0 8 1700 0.11 0.0 0.0	174 16 0 1383 0.01 0.3 0.8 A			
Average Delay Intersection Capacity Utilization Analysis Period (min)			1.7 32.9% 15	ICI	U Level of S	ervice

PM Peak Hour Total Traffic with Site Generated Trips

	-	-	•	←	•	†	>	Į,	↓	*
Lane Group	EBT	EBR	EBR2	WBT	NBL	NBT	SBL2	SBL	SBT	NWL
Lane Configurations	†	7	7	∱ 1>	Ŋ	∱ 1>		N.	∱ }	A A
Traffic Volume (vph)	200	245	140	392	275	680	18	164	424	598
Future Volume (vph)	200	245	140	392	275	680	18	164	424	598
Lane Group Flow (vph)	217	266	152	442	299	783	0	198	513	846
Turn Type	NA	custom	custom	NA	pm+pt	NA	pm+pt	pm+pt	NA	Prot
Protected Phases	8			8	1	6	5	5	2	7
Permitted Phases		4	4		6		2	2		
Minimum Split (s)	36.0	43.0	43.0	36.0	14.0	46.0	14.0	14.0	46.0	37.0
Total Split (s)	38.0	84.0	84.0	38.0	23.0	46.0	23.0	23.0	46.0	46.0
Total Split (%)	24.8%	54.9%	54.9%	24.8%	15.0%	30.1%	15.0%	15.0%	30.1%	30.1%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	4.0	4.0	4.0	4.0	3.0	0.0	3.0	3.0	0.0	4.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	-1.0
Total Lost Time (s)	7.0	7.0	7.0	7.0	6.0	3.0		6.0	3.0	7.0
Lead/Lag					Lag	Lead	Lag	Lag	Lead	
Lead-Lag Optimize?					3		3	3		
Act Effct Green (s)	31.0	77.0	77.0	31.0	57.0	43.0		57.0	43.0	39.0
Actuated g/C Ratio	0.20	0.50	0.50	0.20	0.37	0.28		0.37	0.28	0.25
v/c Ratio	0.59	0.42	0.21	0.64	0.91	0.85		0.84	0.60	1.01
Control Delay	62.9	26.6	3.5	60.4	83.6	62.3		87.4	50.2	89.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	62.9	26.6	3.5	60.4	83.6	62.3		87.4	50.2	89.8
.OS	E	С	Α	Ε	F	E		F	D	F
Approach Delay	33.4	-	•	60.4		68.2			60.6	89.8
Approach LOS	C			E		E			E	F
Queue Length 50th (m)	60.4	49.9	0.0	65.1	64.1	119.0		44.1	70.2	~131.9
Queue Length 95th (m)	88.8	73.5	11.4	84.0	#115.7	144.7		#86.5	89.7	#173.6
Internal Link Dist (m)	61.0			229.8		476.3			175.9	271.5
Turn Bay Length (m)		70.0	70.0		200.0					
Base Capacity (vph)	366	631	739	692	327	917		235	857	836
Starvation Cap Reductn	0	0	0	0	0	0		0	0	0
Spillback Cap Reductn	0	0	0	0	0	0		0	0	0
Storage Cap Reductn	0	0	0	0	0	0		0	0	0
Reduced v/c Ratio	0.59	0.42	0.21	0.64	0.91	0.85		0.84	0.60	1.01
Intersection Summary										

Cycle Length: 153

Actuated Cycle Length: 153

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 135 Control Type: Pretimed Maximum v/c Ratio: 1.01 Intersection Signal Delay: 64.8 Intersection Capacity Utilization 112.5%

Intersection LOS: E ICU Level of Service H

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Robie Street & Bell Road & Quinpool Road/Cogswell Street

Ø2 (R)	↑ ø1	◆ _{Ø7}	≠ ø8
46 s	23 s	46 s	38 s
∮ Ø6 (R)	₩ _{Ø5}	⊸ Ø4	
46 s	23 s	84 s	

WSP Canada Inc Synchro 10 Report

2: Robie Street & Welsford Street

	•	•	4	†	Ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control	0 0 Stop	ئ 91 91	0	*** 875 875 Free	↑↑↑ , 563 563 Free	5 5
Grade Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s)	0% 0.92 0	0.92 99	0.92	0% 0.92 951	3% 0.92 612	0.92 5
Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (m)	0.70			None 200	None	
pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	0.78 1090	206	617			
vCu, unblocked vol tC, single (s) tC, 2 stage (s)	566 6.8	206 6.9	617 4.1			
tF (s) p0 queue free % cM capacity (veh/h)	3.5 100 356	3.3 88 800	2.2 100 959			
Direction, Lane #	EB1	NB 1	NB 2	SB 1	SB 2	SB 3
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m) Control Delay (s) Lane LOS	99 0 99 800 0.12 3.2 10.1 B	476 0 0 1700 0.28 0.0 0.0	476 0 0 1700 0.28 0.0 0.0	245 0 0 1700 0.14 0.0 0.0	245 0 0 1700 0.14 0.0 0.0	127 0 5 1700 0.07 0.0 0.0
Approach Delay (s) Approach LOS Intersection Summary	10.1 B	0.0		0.0		
Average Delay Intersection Capacity Utilization Analysis Period (min)			0.6 27.5% 15	ICU	J Level of S	ervice

3: Quinpool/Quinpool Road & Windsor Street

	٠	→	←	•	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		† †	^	7		7
Traffic Volume (veh/h)	0	585	865	431	0	101
Future Volume (Veh/h)	0	585	865	431	0	101
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	636	940	468	0	110
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)			85			
pX, platoon unblocked	0.92				0.92	0.92
vC, conflicting volume	1408				1258	470
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1272				1109	254
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	100				100	84
cM capacity (veh/h)	499				188	687
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	SB 1
Volume Total	318	318	470	470	468	110
Volume Left	0	0	0	0	0	0
Volume Right	0	0	0	0	468	110
cSH	1700	1700	1700	1700	1700	687
Volume to Capacity	0.19	0.19	0.28	0.28	0.28	0.16
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	4.3
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	11.2
Lane LOS						В
Approach Delay (s)	0.0		0.0			11.2
Approach LOS						В
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Utilization			36.8%	ICI	J Level of S	ervice
Analysis Period (min)			15			

4: Windsor Street & Welsford Street

	•	•	†	<i>></i>	>	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control Grade	5 5 Stop 0%	27 27	461 461 Free 0%	6 6	75 75	4 145 145 Free 0%
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage	0.92 5	0.92 29	0.92 501	0.92 7	0.92 82	0.92 158
Right turn flare (veh) Median type Median storage veh) Upstream signal (m) pX, platoon unblocked			None			None
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	826	504			508	
vCu, unblocked vol tC, single (s) tC, 2 stage (s)	826 6.4	504 6.2			508 4.1	
tF (s) p0 queue free % cM capacity (veh/h)	3.5 98 315	3.3 95 567			2.2 92 1057	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	34 5 29 508 0.07 1.6 12.6 B	508 0 7 1700 0.30 0.0 0.0	240 82 0 1057 0.08 1.9 3.5 A 3.5			
Intersection Summary Average Delay Intersection Capacity Utilization Analysis Period (min)			1.6 49.7% 15	ICI	J Level of Se	ervice

	•	•	†	~	>	+
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control Grade	11 11 Stop 0%	37 37	410 410 410 Free 0%	21 21	43 43	90 90 90 Free 0%
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage	0.92 12	0.92 40	0.92 446	0.92 23	0.92 47	0.92 98
Right turn flare (veh) Median type Median storage veh) Upstream signal (m) pX, platoon unblocked			None			None
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	650	458			469	
vCu, unblocked vol tC, single (s) tC, 2 stage (s)	650 6.4	458 6.2			469 4.1	
tF (s) p0 queue free % cM capacity (veh/h)	3.5 97 415	3.3 93 603			2.2 96 1093	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m)	52 12 40 546 0.10 2.4	469 0 23 1700 0.28 0.0	145 47 0 1093 0.04 1.0			
Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	12.3 B 12.3 B	0.0	3.0 A 3.0			
Intersection Summary Average Delay Intersection Capacity Utilization Analysis Period (min)			1.6 43.3% 15	IC	U Level of S	ervice

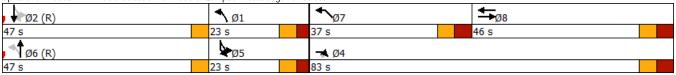
AM Peak Hour Future Background

_		•	←	•	4	†	-	r*	-	Ļ	↓
Lane Group EE	T EBR	EBR2	WBT	WBR	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT
Lane Configurations	↑ 1*	7	∱ 1≽		7	∱ 1>				1	↑ ↑
Traffic Volume (vph) 3	0 565	335	105	10	150	380	20	15	20	230	675
Future Volume (vph) 3	0 565	335	105	10	150	380	20	15	20	230	675
Satd. Flow (prot) 16	6 1374	1374	2975	0	1559	2880	0	0	0	1513	2726
Flt Permitted					0.121					0.340	
Satd. Flow (perm) 16	6 1374	1236	2975	0	199	2880	0	0	0	455	2726
Satd. Flow (RTOR)		283	6								4
Lane Group Flow (vph) 33		364	125	0	163	451	0	0	0	272	777
Turn Type N	A custom	custom	NA		pm+pt	NA			pm+pt	pm+pt	NA
Protected Phases	8 4		8		1	6			5	5	2
Permitted Phases		4			6				2	2	
Total Split (s) 46		83.0	46.0		23.0	47.0			23.0	23.0	47.0
Total Lost Time (s) 7	.0 7.0	7.0	7.0		6.0	3.0				6.0	3.0
Act Effct Green (s) 39	.0 76.0	76.0	39.0		58.0	44.0				58.0	44.0
Actuated g/C Ratio 0.3		0.50	0.25		0.38	0.29				0.38	0.29
v/c Ratio 0.8		0.48	0.16		0.72	0.54				0.94	0.99
Control Delay 70		7.8	42.9		73.2	49.0				90.3	82.8
,	0.0	0.0	0.0		0.0	0.0				0.0	0.0
Total Delay 70		7.8	42.9		73.2	49.0				90.3	82.8
LOS	E D	Α	D		E	D				F	F
Approach Delay 45			42.9			55.4					84.7
11	D		D			Е					F
Queue Length 50th (m) 97		13.0	14.8		31.9	61.2				58.1	123.7
Queue Length 95th (m) #144		37.7	23.9		#62.0	79.2				#113.4	#167.4
Internal Link Dist (m) 61			320.8			379.4					173.2
Turn Bay Length (m)	70.0	70.0									
Base Capacity (vph) 4		756	762		226	828				290	786
Starvation Cap Reductn	0 0	0	0		0	0				0	0
Spillback Cap Reductn	0 0	0	0		0	0				0	0
Storage Cap Reductn	0 0	0	0		0	0				0	0
Reduced v/c Ratio 0.8	0.90	0.48	0.16		0.72	0.54				0.94	0.99

Intersection Summary Cycle Length: 153

Actuated Cycle Length: 153

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green


Control Type: Pretimed Maximum v/c Ratio: 0.99 Intersection Signal Delay: 62.8 Intersection Capacity Utilization 117.1%

Intersection LOS: E ICU Level of Service H

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Robie Street & Bell Road & Quinpool Road/Cogswell Street

WSP Canada Inc Synchro 10 Report

April 2019

Page A-27 AM Peak Hour Future Background

	•	\	4
SBR	NWL	NWR	NWR2
	77		
40	270	110	5
40	270	110	5
0	2421	0	0
	0.966		
0	2363	0	0
0	418	0	0
	Prot		
	7		
	37.0		
	0.88		
	278.4		
	0		
	0		
	0		
	0.88		
_	40 40 0	40 270 40 270 0 2421 0.966 0 2363 0 418 Prot 7 37.0 7.0 30.0 0.20 0.88 80.2 0.0 80.2 F 80.2 F 64.3 #92.6 278.4	40 270 110 40 270 110 0 2421 0 0.966 0 2363 0 0 418 0 Prot 7 37.0 7.0 30.0 0.20 0.88 80.2 0.0 80.2 F 80.2 F 80.2 F 64.3 #92.6 278.4 474 0 0 0

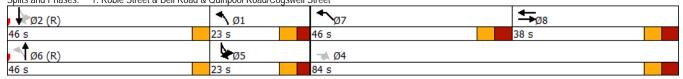
PM Peak Hour Future Background

Lane Group EBT EBR EBR2 WBT WBR NBL NBT NBR NBR2 SBL2 SBI	SBT
Edit Croup	
Lane Configurations \uparrow \uparrow \uparrow \uparrow \uparrow	
Traffic Volume (vph) 200 245 140 390 15 265 680 30 10 15 16	420
Future Volume (vph) 200 245 140 390 15 265 680 30 10 15 165	420
Satd. Flow (prot) 1807 1536 1536 3408 0 1742 3263 0 0 0 169°	3031
Fit Permitted 0.291 0.110	
Satd. Flow (perm) 1807 1255 1320 3408 0 519 3263 0 0 0 182	3031
Satd. Flow (RTOR) 152 2	7
Lane Group Flow (vph) 217 266 152 440 0 288 783 0 0 0 199	506
Turn Type NA custom Custom NA pm+pt NA pm+pt pm+p	NA
Protected Phases 8 8 1 6 5 5	2
Permitted Phases 4 4 6 2 2	
Total Split (s) 38.0 84.0 84.0 38.0 23.0 46.0 23.0 23.0	46.0
Total Lost Time (s) 7.0 7.0 7.0 6.0 3.0 6.1	3.0
Act Effct Green (s) 31.0 77.0 77.0 31.0 57.0 43.0 57.0	43.0
Actuated g/C Ratio 0.20 0.50 0.50 0.20 0.37 0.28 0.37	0.28
v/c Ratio 0.59 0.42 0.21 0.64 0.88 0.85 0.85	0.59
Control Delay 62.9 26.6 3.5 60.4 77.0 62.3 85.5	50.1
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
Total Delay 62.9 26.6 3.5 60.4 77.0 62.3 85.1	50.1
LOS E C A E E E	D
Approach Delay 33.4 60.4 66.2	60.0
Approach LOS C E E	Е
Queue Length 50th (m) 60.4 49.9 0.0 64.8 61.2 119.0 43.	69.1
Queue Length 95th (m) 88.8 73.5 11.4 83.4 #106.6 144.7 #83.4	88.4
Internal Link Dist (m) 61.0 229.8 476.3	175.9
Turn Bay Length (m) 70.0 70.0 200.0	
Base Capacity (vph) 366 631 739 692 329 917 235	856
Starvation Cap Reductn 0 0 0 0 0 0	0
Spillback Cap Reductn 0 0 0 0 0 0	0
Storage Cap Reductn 0 0 0 0 0 0	0
Reduced v/c Ratio 0.59 0.42 0.21 0.64 0.88 0.85 0.85	0.59

Intersection Summary

Cycle Length: 153 Actuated Cycle Length: 153

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green


Control Type: Pretimed Maximum v/c Ratio: 1.01 Intersection Signal Delay: 63.9 Intersection Capacity Utilization 112.3%

Intersection LOS: E ICU Level of Service H

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Robie Street & Bell Road & Quinpool Road/Cogswell Street

WSP Canada Inc Synchro 10 Report Reduced v/c Ratio

Intersection Summary

PM Peak Hour Future Background

1.01

NWR Lane Group SBR NWL Laresconfigurations AAA Traffic Volume (vph) 45 595 180 Future Volume (vph) 45 595 180 Satd. Flow (prot) 0 3282 0 Flt Permitted 0.963 Satd. Flow (perm) 0 0 3174 Satd. Flow (RTOR) Lane Group Flow (vph) 0 843 0 Turn Type Prot Protected Phases 7 Permitted Phases Total Split (s) 46.0 Total Lost Time (s) 7.0 Act Effct Green (s) 39.0 Actuated g/C Ratio 0.25 v/c Ratio 1.01 Control Delay 89.0 Queue Delay 0.0 Total Delay 89.0 LOS Approach Delay 89.0 Approach LOS F Queue Length 50th (m) ~130.7 Queue Length 95th (m) #172.9 Internal Link Dist (m) 271.5 Turn Bay Length (m) Base Capacity (vph) 836 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0

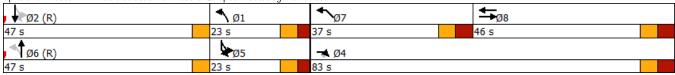
WSP Canada Inc Synchro 10 Report

AM Peak Hour Total Traffic with Site Generated Trips

	-		•	•	•	4	†	~	r*	-	Ļ	ļ
Lane Group	EBT	EBR	EBR2	WBT	WBR	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT
Lane Configurations	†	7	7	∱ 1>		18	∱ β				Ä	↑ ↑
Traffic Volume (vph)	310	565	335	105	10	149	380	20	15	23	233	679
Future Volume (vph)	310	565	335	105	10	149	380	20	15	23	233	679
Satd. Flow (prot)	1616	1374	1374	2975	0	1559	2880	0	0	0	1513	2731
Flt Permitted						0.122					0.340	
Satd. Flow (perm)	1616	1374	1236	2975	0	197	2880	0	0	0	455	2731
Satd. Flow (RTOR)			283	6								3
Lane Group Flow (vph)	337	614	364	125	0	162	451	0	0	0	278	776
Turn Type	NA	custom	custom	NA		pm+pt	NA			pm+pt	pm+pt	NA
Protected Phases	8	4		8		1	6			5	5	2
Permitted Phases			4			6				2	2	
Total Split (s)	46.0	83.0	83.0	46.0		23.0	47.0			23.0	23.0	47.0
Total Lost Time (s)	7.0	7.0	7.0	7.0		6.0	3.0				6.0	3.0
Act Effct Green (s)	39.0	76.0	76.0	39.0		58.0	44.0				58.0	44.0
Actuated g/C Ratio	0.25	0.50	0.50	0.25		0.38	0.29				0.38	0.29
v/c Ratio	0.82	0.90	0.48	0.16		0.72	0.54				0.96	0.99
Control Delay	70.7	53.0	7.8	42.9		72.9	49.0				94.8	82.2
Queue Delay	0.0	0.0	0.0	0.0		0.0	0.0				0.0	0.0
Total Delay	70.7	53.0	7.8	42.9		72.9	49.0				94.8	82.2
LOS	E	D	Α	D		Ε	D				F	F
Approach Delay	45.0			42.9			55.3					85.6
Approach LOS	D			D			Ε					F
Queue Length 50th (m)	97.1	166.5	13.0	14.8		31.7	61.2				59.7	123.5
Queue Length 95th (m)	#144.2	#245.3	37.7	23.9		#61.7	79.2				#117.8	#167.1
Internal Link Dist (m)	61.0			320.8			379.4					173.2
Turn Bay Length (m)		70.0	70.0									
Base Capacity (vph)	411	682	756	762		226	828				290	787
Starvation Cap Reductn	0	0	0	0		0	0				0	0
Spillback Cap Reductn	0	0	0	0		0	0				0	0
Storage Cap Reductn	0	0	0	0		0	0				0	0
Reduced v/c Ratio	0.82	0.90	0.48	0.16		0.72	0.54				0.96	0.99

Intersection Summary Cycle Length: 153

Actuated Cycle Length: 153


Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Control Type: Pretimed Maximum v/c Ratio: 0.99 Intersection Signal Delay: 63.0 Intersection Capacity Utilization 117.5%

Intersection LOS: E ICU Level of Service H

Analysis Period (min) 15

Splits and Phases: 1: Robie Street & Bell Road & Quinpool Road/Cogswell Street

WSP Canada Inc Synchro 10 Report

April 2019

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	1	*	*	4
Lane Group	SBR	NWL	NWR	NWR2
Lar Configurations		A AA		
Traffic Volume (vph)	35	269	110	5
Future Volume (vph)	35	269	110	5
Satd. Flow (prot)	0	2420	0	0
Flt Permitted		0.966		
Satd. Flow (perm)	0	2362	0	0
Satd. Flow (RTOR)				
Lane Group Flow (vph)	0	417	0	0
Turn Type		Prot		
Protected Phases		7		
Permitted Phases				
Total Split (s)		37.0		
Total Lost Time (s)		7.0		
Act Effct Green (s)		30.0		
Actuated g/C Ratio		0.20		
v/c Ratio		0.88		
Control Delay		79.9		
Queue Delay		0.0		
Total Delay		79.9		
LOS		Ε		
Approach Delay		79.9		
Approach LOS		Ε		
Queue Length 50th (m)		64.1		
Queue Length 95th (m)		#92.3		
Internal Link Dist (m)		278.4		
Turn Bay Length (m)				
Base Capacity (vph)		474		
Starvation Cap Reductn		0		
Spillback Cap Reductn		0		
Storage Cap Reductn		0		
Reduced v/c Ratio		0.88		
Intersection Summary				
intersection summary				

PM Peak Hour Total Traffic with Site Generated Trips

Lane Group EBT EBR EBR2 WBT WBR NBL NBT NBR NBR2 SBL2 SBL	SBT 1 75 424
	424
Lane Configurations \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow	424
Traffic Volume (vph) 200 245 140 392 15 275 680 30 10 18 164	
Future Volume (vph) 200 245 140 392 15 275 680 30 10 18 164	424
Satd. Flow (prot) 1807 1536 1536 3408 0 1742 3263 0 0 0 1691	3030
Fit Permitted 0.286 0.110	
Satd. Flow (perm) 1807 1255 1320 3408 0 511 3263 0 0 0 182	3030
Satd. Flow (RTOR) 152 2	8
Lane Group Flow (vph) 217 266 152 442 0 299 783 0 0 0 198	513
Turn Type NA custom custom NA pm+pt NA pm+pt pm+pt	NA
Protected Phases 8 8 1 6 5 5	2
Permitted Phases 4 4 6 2 2	
Total Split (s) 38.0 84.0 84.0 38.0 23.0 46.0 23.0 23.0	46.0
Total Lost Time (s) 7.0 7.0 7.0 6.0 3.0 6.0	3.0
Act Effct Green (s) 31.0 77.0 77.0 31.0 57.0 43.0 57.0	43.0
Actuated g/C Ratio 0.20 0.50 0.50 0.20 0.37 0.28 0.37	0.28
v/c Ratio 0.59 0.42 0.21 0.64 0.91 0.85 0.84	0.60
Control Delay 62.9 26.6 3.5 60.4 83.6 62.3 87.4	50.2
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
Total Delay 62.9 26.6 3.5 60.4 83.6 62.3 87.4	50.2
LOS E C A E F E F	D
Approach Delay 33.4 60.4 68.2	60.6
Approach LOS C E E	E
Queue Length 50th (m) 60.4 49.9 0.0 65.1 64.1 119.0 44.1	70.2
Queue Length 95th (m) 88.8 73.5 11.4 84.0 #115.7 144.7 #86.5	89.7
Internal Link Dist (m) 61.0 229.8 476.3	175.9
Turn Bay Length (m) 70.0 70.0 200.0	
Base Capacity (vph) 366 631 739 692 327 917 235	857
Starvation Cap Reductn 0 0 0 0 0 0	0
Spillback Cap Reductn 0 0 0 0 0 0	0
Storage Cap Reductn 0 0 0 0 0 0	0
Reduced v/c Ratio 0.59 0.42 0.21 0.64 0.91 0.85 0.84	0.60

Intersection Summary Cycle Length: 153

Actuated Cycle Length: 153

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Control Type: Pretimed Maximum v/c Ratio: 1.01 Intersection Signal Delay: 64.8 Intersection Capacity Utilization 112.5%

Intersection LOS: E ICU Level of Service H

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Robie Street & Bell Road & Quinpool Road/Cogswell Street

₩ Ø2 (R)	↑ ø1	◆ _{Ø7}		≠ ø8	
46 s	23 s	46 s	3	38 s	
∮ Ø6 (R)	ø ₅	⊸ Ø4			
46 s	23 s	84 s			

WSP Canada Inc Synchro 10 Report

	4	*	*
Lane Group	SBR	NWL	NWR
Lantiponfigurations		AAA	
Traffic Volume (vph)	48	598	180
Future Volume (vph)	48	598	180
Satd. Flow (prot)	0	3282	0
Flt Permitted		0.963	
Satd. Flow (perm)	0	3174	0
Satd. Flow (RTOR)			
Lane Group Flow (vph)	0	846	0
Turn Type		Prot	
Protected Phases		7	
Permitted Phases			
Total Split (s)		46.0	
Total Lost Time (s)		7.0	
Act Effct Green (s)		39.0	
Actuated g/C Ratio		0.25	
v/c Ratio		1.01	
Control Delay		89.8	
Queue Delay		0.0	
Total Delay		89.8	
LOS		F	
Approach Delay		89.8	
Approach LOS		F	
Queue Length 50th (m)		~131.9	
Queue Length 95th (m)		#173.6	
Internal Link Dist (m)		271.5	
Turn Bay Length (m)			
Base Capacity (vph)		836	
Starvation Cap Reductn		0	
Spillback Cap Reductn		0	
Storage Cap Reductn		0	
Reduced v/c Ratio		1.01	
Intercaction Summany			
Intersection Summary			