

Servant, Dunbrack, McKenzie & MacDonald Ltd. **NOVA SCOTIA LAND SURVEYORS & CONSULTING ENGINEERS**

36 Oland Crescent Phone (902) 455-1537 Bayers Lake Business Park Fax (902) 455-8479 Halifax, Nova Scotia B3S 1C6 sdmm.ca Web

March 6, 2020

Halifax Water 450 Cowie Hill Road Halifax, NS **B3P 2V3**

From: Alex Pulsifer, P.Eng.

File No. <u>1-3-62 (34976)</u>

Re: 13 Unit Residential Development, 48/50 Old Sambro Road, Halifax, NS -**Sanitary Lateral Size Confirmation**

Project Summary:

	Units
Residential	13
*From Developer	

References:

1. Halifax Water (HW) Design & Construction Specifications (2018 Edition), Section 4.2.2:

 $Q = [1.25 \times (a \times M)] + b$ Where;

Q = Sanitary sewer flow.

1.25 = Safety factor.

a = Average dry weather flow.

M = Peaking factor using Harmon Formula; M = 1 + [14 / (4 + P^{0.5})]

RAYMOND A. LANDRY

CHRISTOPHER J. FORAN

GEOFFREY K. MacLEAN

P.Eng., LEED Green Associate

ALEXANDER W. PULSIFER

RACHAEL W. KYTE

MICHAEL S. TANNER

P.Eng.

P.Eng.

NSLS (Ret)

MASc., P.Eng., LEED Green Associate

DANIEL S. GERARD

H. JAMES McINTOSH P.Eng., NSLS, CLS

P.Eng., NSLS

KEVIN A. ROBB

BLAKE H. TRASK

ADAM J. PATTERSON

P.Eng., NSLS

P.Eng., NSLS

NSLS

b = Long-term infiltration/inflow allowance.

P = Population in thousands

Residential Average Dry Weather Flow:

300 L/day per person

Multi-unit dwellings: 2.25 people per unit

Infiltration allowance: 0.28 L/hagross/s

Calculation Summary:

Population Estimate (P)

Reference:

HW Section 4.2.1 Residential (Multi-unit dwellings): 2.25 people per unit

P = 2.25 people per unit x 13 Units = 30 people (or 0.030)

Dry Weather Flow (a)

Reference:

HW Section 4.2.2: Residential: 300 L/day per person

a = 300 L/day per person x 30 people = 9,000 L/day (or 0.104 L/s)

Infiltration (b)

Reference:

HW Section 4.2.2: Infiltration allowance: 0.28 L/ha_{gross}/s Lot Area = $1195 \text{ m}^2 = 0.12 \text{ ha}$

b: $0.28 \text{ L/ha}_{gross}/s \times 0.12 \text{ ha} = 0.034 \text{ L/s}$

Peaking Factor (M)

$$M = 1 + [14 / (4 + P^{0.5})]$$

$$M = 1 + [14 / (4 + (0.030)^{0.5})] = 4.35$$

Sanitary Sewer Flow (Q)

Q =
$$[1.25 \times (a \times M)] + b$$

Q = $[1.25 \times (0.104 \text{ L/s} \times 4.35)] + 0.034 \text{ L/s}$ = **0.60 L/s**

Sanitary Lateral Size Confirmation:

A 150mm diameter PVC lateral at 2.00% slope has a capacity of 28.0 L/s. With Q = 0.60 L/s, the proposed lateral will have sufficient flow capacity. For additional information or discussion regarding these findings please contact the undersigned.

Regards,

Servant, Dunbrack, McKenzie & MacDonald Ltd.

Alex Pulsifer, P.Eng.

Project Engineer

Z:\SDMM\34000-34999\34950\34976\Design\Sanitary\34976 Sanitary Flow Confirmation.docx